首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth-receptor-bound protein (Grb)7 is an adapter protein aberrantly overexpressed, along with the erbB-2 receptor in breast cancer and in other cancers. Normally recruited to focal adhesions with a role in cell migration, it is associated with erbB-2 in cancer cells and is found to exacerbate cancer progression via stimulation of cell migration and proliferation. The G7-18NATE peptide (sequence: WFEGYDNTFPC cyclized via a thioether bond) is a nonphosphorylated peptide that was developed for the specific inhibition of Grb7 by blocking its SH2 domain. Cell-permeable versions of G7-18NATE are effective in the reduction of migration and proliferation in Grb7-overexpressing cells. It thus represents a promising starting point for the development of a therapeutic against Grb7. Here, we report the crystal structure of the G7-18NATE peptide in complex with the Grb7-SH2 domain, revealing the structural basis for its interaction. We also report further rounds of phage display that have identified G7-18NATE analogues with micromolar affinity for Grb7-SH2. These peptides retained amino acids F2, G4, and F9, as well as the YDN motif that the structural biology study showed to be the main residues in contact with the Grb7-SH2 domain. Isothermal titration calorimetry measurements reveal similar and better binding affinity of these peptides compared with G7-18NATE. Together, this study facilitates the optimization of second-generation inhibitors of Grb7.  相似文献   

2.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   

3.
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm ) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Surface plasmon resonance (SPR) is a useful biosensor technique for the study of biomolecular interactions, with the potential for high-throughput screening of ligand interactions with drug targets. The key to its successful use, however, is in the appropriate design of the experiment, including the mode of immobilization to the biosensor chip. We report an investigation of the use of SPR for measuring the affinity of the G7-18NATE peptide ligand for its Grb7-SH2 domain target involved in the migratory and proliferative potential of cancer cells. Previous studies have shown that the cyclic non-phosphorylated peptide, G7-18NATE, inhibits Grb7 interactions with upstream binding partners and is able to inhibit both cell migration and proliferation of cancer cells. We report the synthesis of a biotinylated G7-18NATE covalently attached to a linker (G7-18NATE-ASASASK-Biotin) and compare its interaction with the Grb7-SH2 domain by SPR using three different immobilization strategies; immobilisation of the peptide via streptavidin, immobilization of glutathione S-transferase (GST)-Grb7-SH2 domain via anti-GST antibody, and immobilization of biotinylated Grb7-SH2 domain via streptavidin. This revealed that sensorgrams free from non-specific binding and displaying simple kinetics were most readily achieved by immobilising the protein rather than the peptide, in spite of the lower response associated with this method. K D values of ~300 μM were determined for both strategies at pH 7.4. This compared with a K D value of 4.4 μM at pH 6 demonstrating the importance of pH on this interaction. Overall, the immobilised protein systems are most suitable for future comparative screening efforts using SPR.  相似文献   

5.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

6.
Grb7 is the prototype of a family of adaptor molecules that also include Grb10 and Grb14 that share a conserved molecular architecture including Src homology 2 (SH2) and pleckstrin homology (PH) domains. Grb7 has been implicated as a downstream mediator of integrin-FAK signal pathways in the regulation of cell migration, although the molecular mechanisms are still not well understood. In this paper, we investigated the potential role and mechanisms of PH domain in Grb7 in the regulation of cell migration. We found that the PH domain mediated Grb7 binding to phospholipids both in vitro and in intact cells. Furthermore, both Grb7 and its PH domain preferentially interacted with phosphatidylinositol phosphates showing strongest affinity to the D3- and D5-phosphoinositides. The PH domain interaction with phosphoinositides was shown to play a role in the stimulation of cell migration by Grb7. It was also shown to be necessary for Grb7 phosphorylation by FAK, although it was not required for Grb7 interaction with FAK or recruitment to the focal contacts. Last, we found that PI 3-kinase activity played a role in both Grb7 association with phosphoinositides and its stimulation of cell migration. In addition, both FAK binding to PI 3-kinase via its autophosphorylated Tyr(397) and integrin-mediated cell adhesion increased Grb7 association with phosphoinositides. Together, these results identified the Grb7 PH domain interaction with phosphoinositides and suggested a potential mechanism by which several signaling molecules including Grb7, FAK, and PI 3-kinase and their interactions cooperate to mediate signal transduction pathways in integrin-mediated cell migration.  相似文献   

7.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20-30% of breast cancers. In general, growth factor receptor bound (Grb) proteins bind to activated membrane-bound receptor tyrosine kinases (RTKs; e.g., the epidermal growth factor receptor, EGFR) through their Src homology 2 (SH2) domains. In particular, Grb7 binds to erbB2 (a.k.a. EGFR2) and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In previous studies, we reported the solution structure and the backbone relaxation behavior of the Grb7-SH2/erbB2 peptide complex. In this study, isothermal titration calorimetry studies have been completed by measuring the thermodynamic binding parameters of several phosphorylated and non-phosphorylated peptides representative of natural Grb7 receptor ligands as well as ligands developed through combinatorial peptide screening methods. The entirety of these calorimetric studies is interpreted in an effort to describe the specific ligand binding characteristics of the Grb7 protein.  相似文献   

8.
9.
Association of focal adhesion kinase with Grb7 and its role in cell migration.   总被引:11,自引:0,他引:11  
Focal adhesion kinase (FAK) has been implicated to play a key role in integrin-mediated signal transduction in cell migration. Grb7 is an Src homology (SH) 2-containing and pleckstrin homology domain-containing molecule, which shares significant homology with the Caenorhabditis elegans gene for Mig-10 involved in cell migration during embryogenesis. Here, we report that the SH2 domain of Grb7 can directly interact with FAK through Tyr-397, a major autophosphorylation site in vitro and in vivo. This interaction is cell adhesion-dependent, suggesting that the FAK-Grb7 complex is involved in integrin signaling. Using tetracycline-regulated expression system, we showed that overexpression of Grb7 enhanced cell migration toward fibronectin, whereas overexpression of its SH2 domain alone inhibited cell migration. In addition, we found that phosphorylation of FAK or p130(cas) was not affected by the expression of either Grb7 or its SH2 domain alone, suggesting that Grb7 is downstream of FAK and does not compete with Src for binding to FAK in vivo. Taken together, these results suggest that the FAK-Grb7 complex plays a role in cell migration stimulated by integrin signaling through FAK.  相似文献   

10.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%–30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T1, T2, and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.  相似文献   

11.
We have previously described Grb7 association with focal adhesion kinase (FAK) and its possible roles in cell migration. In this paper, we investigated the mechanisms by which Grb7 and its association with FAK regulate cell migration. We found that deletion of the Grb7 SH2 domain eliminated partial Grb7 localization to focal contacts and its ability to stimulate cell migration. Replacement of the SH2 domain with the focal adhesion targeting sequence from FAK resulted in the focal contacts localization of the chimeric molecule and restored its activity to stimulate cell migration. We also found that Grb7 could be phosphorylated by FAK, which was dependent on the FAK kinase activity but not the presence of the Src family kinases. Cell adhesion also enhanced Grb7 phosphorylation in FAK+/+ cells but not FAK-/- cells, suggesting that Grb7 is a physiological substrate of FAK. Furthermore, both Grb7 and the chimeric molecule did not increase migration of FAK-/- cells, although the chimeric molecule was targeted to the focal contacts. Last, we showed that other Grb7 family members could not stimulate cell migration under similar experimental conditions. Together, these results demonstrate a role for Grb7 targeting to focal contacts and its phosphorylation by FAK in the regulation of cell migration.  相似文献   

12.
EphB1 associates with Grb7 and regulates cell migration   总被引:3,自引:0,他引:3  
EphB1 is a member of the Eph family of receptor tyrosine kinases that play important roles in diverse biological processes including nervous system development, angiogenesis, and neural synapsis formation and maturation. Grb7 is an adaptor molecule implicated in the regulation of cell migration. Here we report identification of an interaction between Grb7 and the cytoplasmic domain of EphB1 by using Grb7 as a "bait" in a yeast two-hybrid screening. Co-immunoprecipitation was used to confirm the interaction of Grb7 with the cytoplasmic domain of EphB1 as well as the full-length receptor in intact cells. This interaction is mediated by the SH2 domain of Grb7 and requires tyrosine autophosphorylation of EphB1. Furthermore, Tyr-928 of EphB1 was identified as the primary binding site for Grb7. Stimulation of endogenous EphB1 in embryonal carcinoma P19 cells with its ligand ephrinB1 increased its association with Grb7, which is consistent with a role for the autophosphorylation of EphB1. We also found that EphB1 could phosphorylate Grb7 and mutation of either Tyr-928 or Tyr-594 to Phe decreased this activity. Finally, we show that EphB1 could stimulate fibroblast motility on extracellular matrix in a kinase-dependent manner, which also correlated with its association with Grb7. Consistent with this, co-expression of Grb7 with EphB1 further enhanced cell motility, whereas co-expression of the Grb7 SH2 domain abolished EphB1-stimulated cell migration. Together, our results identified a novel interaction between EphB1 with the adaptor molecule Grb7 and suggested that this interaction may play a role in the regulation of cell migration by EphB1.  相似文献   

13.
1H, 13C, and 15N NMR resonances of the SH2 domain of Grb2/Ash in both the free form and the form complexed with a phosphotyrosine-containing peptide derived from the EGF receptor were assigned by analysis of multi-dimensional, double- and triple-resonance NMR experiments. From the chemical shift changes of individual residues upon peptide binding, the binding site for the peptide was mapped on the structure of Grb2/Ash SH2. The peptide was not recognized by the groove formed by the BG and EF loops, suggesting that the EGFR peptide does not bind to Grb2/Ash SH2 in an extended conformation. This was supported by analysis of the binding affinity of mutants where residues on the BG and EF loops were changed to alanine. The present results are consistent with the recently reported structures of Grb2/Ash SH2 complexed with BCR-Abl and Shc-derived phosphotyrosine containing peptides, where the peptide forms a turn conformation. This shows that the specific conformation of the phosphotyrosine-containing sequence is required for the SH2 binding responsible for downstream signaling.  相似文献   

14.
The solution structure and dynamics of G1TE, a nonphosphorylated cyclic peptide inhibitor for the Grb2 SH2 domain, was determined using two-dimensional NMR and simulated annealing methods. G1TE consists of 10 amino acids and a C-terminal Cys cyclized through its side-chain sulfur atom by a thioether linkage to its N terminus. The results indicate that G1TE assumes a circle-like shape in solution in which all the side chains are protruding outside, and none of the residues are involved in intramolecular hydrogen bonding. The average root-mean-square deviations were found to be 0.41 +/- 0.11 A for the backbone heavy atoms C, Calpha, and N, and 1.03 +/- 0.14 A for all heavy atoms in a family of 10 structures. (15)N relaxation measurements indicate that G1TE has rather restricted dynamics in the fast time scale within its backbone. However, residues Tyr3, Val6, and Gly7 may be involved in a possible conformational exchange. The structural comparison between G1TE in solution and the BCR-Abl phosphopeptide bound to Grb2 SH2 domain revealed that G1TE may form a larger circle-like binding surface than the BCR-Abl phosphopeptide in the bound form. Also, the restricted backbone dynamics of G1TE may result in a reduced loss of entropy and can compensate for the absence of a phosphate group at the Tyr3 position. These structural and dynamic properties of G1TE may provide a molecular basis for understanding its interactions with the Grb2 SH2 domain.  相似文献   

15.
Adaptor proteins mediate signal transduction from cell surface receptors to downstream signaling pathways. The Grb7 protein family of adaptor proteins is constituted by Grb7, Grb10, and Grb14. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7‐mediated cell migration has been shown to proceed through a focal adhesion kinase (FAK)/Grb7 pathway, although the specific participants downstream of Grb7 in cell migration signaling have not been fully determined. In this study, we report that Grb7 interacts with Hax‐1, a cytoskeletal‐associated protein found overexpressed in metastatic tumors and cancer cell lines. Additionally, in yeast 2‐hybrid assays, we show that the interaction is specific to the Grb7‐RA and ‐PH domains. We have also demonstrated that full‐length Grb7 and Hax‐1 interact in mammalian cells and that Grb7 is tyrosine phosphorylated. Isothermal titration calorimetry measurements demonstrate the Grb7‐RA‐PH domains bind to the Grb7‐SH2 domain with micromolar affinity, suggesting full‐length Grb7 can exist in a head‐to‐tail conformational state that could serve a self‐regulatory function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is often coamplified with the erythroblastosis oncogene B 2 receptor in 20% to 30% of breast cancer patients. Grb7 overexpression has been linked to increased cell migration and cancer metastasis. The ras associating and pleckstrin homology domain region of Grb7 has been reported to interact with various other downstream signaling proteins such as four and half Lin11, Isl‐1, Mec‐3 (LIM) domains isoform 2 and filamin α. These interactions are believed to play a role in regulating Grb7‐mediated cell migration function. The full‐length Grb7 protein has been shown to dimerize, and the oligomeric state of the Grb7SH2 domain has been extensively studied; however, the oligomerization state of the ras associating and pleckstrin homology domains, and the importance of this oligomerization in Grb7 function, is yet to be fully known. In this study, we characterize the oligomeric state of the Grb7RA domain using size exclusion chromatography, nuclear magnetic resonance, nuclear relaxation studies, glutaraldehyde cross linking, and dynamic light scattering. We report the Grb7RA domain can exist in transient multimeric forms and, based upon modeling results, postulate the potential role of Grb7RA domain oligomerization in Grb7 function.  相似文献   

17.
18.
We have previously reported the association of tumor cell invasion with expression of growth factor receptor-bound protein 7 (Grb7). This molecule contains a Src homology 2 (SH2) domain and shares structural homology with a cell migration molecule designated Mig-10 found in Caenorhabditis elegans. In the present study, Grb7 expression was analyzed in human esophageal carcinomas with or without metastatic spread. The Grb7 protein was overexpressed in 14 of 31 esophageal carcinomas as compared to the adjacent normal mucosa (45%) and this finding was significantly correlated with the presence of lymph node metastases. We also identified that Grb7 protein in esophageal carcinoma cells was phosphorylated on tyrosine by epidermal growth factor as well as attachment to extracellular matrix proteins including fibronectin. Such fibronectin-dependent phosphorylation of Grb7 was regulated by integrin signaling that leads to the interaction with focal adhesion kinase protein. Furthermore, ectopic expression of a Grb7-SH2 dominant-negative fragment inhibited the fibronectin-dependent phosphorylation of endogenous Grb7, and reduced migration of esophageal carcinoma cells into fibronectin. Our results suggest a role of Grb7 mediated signal transduction in generation of an invasive cell phenotype against extracellular matrix, and thus contributes to metastatic progression of human esophageal carcinoma.  相似文献   

19.
Zhang D  Shao C  Hu S  Ma S  Gao Y 《PloS one》2012,7(1):e29902
The Grb7 (growth factor receptor-bound 7) protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2) domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.  相似文献   

20.
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is co-overexpressed and forms a tight complex with the ErbB2 receptor in a number of breast tumours and breast cancer cell lines. The interaction of Grb7 with the ErbB2 receptor is mediated via its Src homology 2 (SH2) domain. Whilst most SH2 domains exist as monomers, recently reported studies have suggested that the Grb7-SH2 domain exists as a homodimer. The self-association properties of the Grb7-SH2 domain were therefore studied using sedimentation equilibrium ultracentrifugation. Analysis of the data demonstrated that the Grb7-SH2 domain is dimeric with a dissociation constant of approximately 11 M. We also demonstrate, using size-exclusion chromatography, that mutation of phenylalanine 511 to an arginine produces a monomeric form of the Grb7-SH2 domain. This mutation represents the first step in the engineering of a Grb7-SH2 domain with good solution properties for further biophysical and structural investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号