首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and polymorphism of saturated monoacid 1,2-diacyl-sn-glycerols   总被引:3,自引:0,他引:3  
D R Kodali  D A Fahey  D M Small 《Biochemistry》1990,29(48):10771-10779
The 1,2-diacyl-sn-glycerols (1,2-DGs) are the predominant naturally occurring isomer found in cell membranes, lipid droplets, and lipoproteins. They are involved in the metabolism of monoacylglycerols, triacylglycerols, and phospholipids. The 1,2-DGs participate in the activation of protein kinase C, in phosphorylation of target proteins, and in transduction of extracellular signals into the cell. We have undertaken a study of the physical properties of a homologous series of synthetic optically active diacylglycerols. Stereospecific 1,2-diacyl-sn-glycerols were synthesized with saturated fatty acyl chains of 12, 16, 18, 22, and 24 carbons in length. Their polymorphic behavior was examined by differential scanning calorimetry and X-ray powder diffraction. The solvent-crystallized form for all the 1,2-DGs packs in the orthorhombic perpendicular subcell (beta') and melts with a single sharp endotherm to an isotropic liquid. On quenching, the C12, C16 and C18 compounds pack in a hexagonal subcell (alpha), whereas the C22 and C24 pack in a pseudohexagonal subcell (sub-alpha). The sub-alpha phase reversibly converts to the alpha phase. The long spacings of these compounds in both the alpha and beta' phases increase with chain length. In the alpha and beta' phases, the acyl chain tilts were found to be 90 degrees and 62 degrees from the basal methyl plane. The polymorphic behavior of 1,2-diacyl-sn-glycerol is quite different from that of the corresponding monoacid saturated 1,3-diacylglycerols which form two beta phases with triclinic parallel subcells.  相似文献   

2.
Triacylglycerols, which usually contain at least one unsaturated fatty acid, are the most important forms of stored biological lipids in teleosts, mammals, and most plants. Since the physical properties of such mixed-chain triacylglycerols are poorly understood, a systematic study of such compounds has been initiated. Stereospecific 1,2-dioleoyl-3-acyl-sn-glycerols were synthesized with even carbon saturated fatty acyl chains of 14-24 carbons in length. Their polymorphic behavior was examined by differential scanning calorimetry and X-ray powder diffraction. The thermal behavior revealed from one to four major polymorphic transitions depending upon saturated chain length. Plots of enthalpy of fusion and entropy vs. carbon number for melting of the most stable polymorph were linear throughout the series with slopes of 1.0 kcal/mol per carbon atom and 2.6 cal/(mol K) per carbon atom, respectively. These slopes indicate that the saturated chains are packed in a well-ordered tightly packed lattice. When the compounds were rapidly cooled to 5 degrees C, X-ray powder diffraction revealed strong beta' (ca. 3.8 and 4.2 A) reflections and weak beta (ca. 4.6 A) reflections. The beta subcell reflections intensified when the compounds were heated to within 5 degrees C of the melting temperature of the highest melting polymorph. Evidence of an alpha phase was not seen on 30-min X-ray exposures for any of the compounds. In the proposed packing arrangement the saturated and unsaturated chains are segregated into layers. The stable form of all compounds exhibits a triple layer packing mode in which a bilayer of oleoyl chains is segregated from an interdigitated layer of saturated chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The crystal structure of the beta'-2 form of a mixed chain triacylglycerol (TAG), 1,2-dipalmitoyl-3-myristoyl-sn-glycerol (PPM), was determined to a final reliability factor of 0.074. This work is the first to resolve the atomic-level structure of the beta' polymorph, which is of the highest functionality among multiple polymorphs in asymmetric TAG. In particular, fat crystals present in food emulsions are in beta', whose transformation into beta causes deterioration in their physical properties. beta'-2, one of the two beta' forms of PPM, forms a monoclinic unit cell with a space group of C2; Z = 8, a = 16.534(5) A, b = 7.537(2) A, c = 81.626(9) A; beta = 90.28(2) degrees, V = 10171(3) A(3), density = 1.018 g/cm(3), and mu = 4.96 cm(-1). The following characteristics were obtained: 1) two asymmetric units, named A and B, form a hybrid-type orthorhombic perpendicular subcell; 2) the two asymmetric units reveal different glycerol conformations: trans for sn-1 palmitic acid and sn-2 palmitic acid, but gauche for sn-3 myristic acid in A; and trans for sn-2 palmitic acid and sn-3 myristic acid, but gauche for sn-1 palmitic acid in B; 3) a unit lamellae reveals a four-chain-length structure consisting of two double-layer leaflets; 4) the two double-layer leaflets are combined end-by-end in a unit lamellae; and 5) the chain axes are alternatively inclined against the lamellar interface. -- Sato, K., M. Goto, J. Yano, K. Honda, D. R. Kodali, and D. M. Small. Atomic resolution structure analysis of beta' polymorph crystal of a triacylglycerol: 1,2-dipalmitoyl-3-myristoyl-sn-glycerol. J. Lipid Res. 2001. 42: 338--345.  相似文献   

4.
Quantitative crystallographic structure analyses are carried out for two polymorphic forms of 1,2-dipalmitoyl-sn-glycerol. A single crystal X-ray determination on the higher melting beta'L-form reveals that the hairpin conformer structure is essentially identical to that of the dilauroyl homolog reported earlier (I. Pascher, S. Sundell and H. Hauser (1981) J. Mol. Biol. 153, 791-806) with inclined acyl chain packing in the O perpendicular methylene subcell. Lamellar electron diffraction intensity data from epitaxially crystallized samples were used to determine the structure of the lower melting alpha L-form. The chains pack in the hexagonal subcell and are perpendicular to the lamellar surface. An appropriately oriented molecular model based on the beta'L-polymorph does not lead to a satisfactory structure solution but models based on the conformationally different 1,2-diglyceride moiety of several phospholipid structures does lead to a closer match to the observed diffraction data. In this proposed packing model for the alpha L-form, the hydroxyl oxygens are somewhat farther away from the unit cell origin than in the beta'L-form crystal structure, and, in combination with the different molecular conformation, this might explain the observed stability of this crystal polymorph against acyl shifts.  相似文献   

5.
Electron diffraction data from solution- and epitaxially-crystallized samples of 1,2-dihexadecyl-sn-glycerophosphocholine are used in an analysis of its molecular packing in the minimally hydrated crystal form. The molecular chain axes are found to be perpendicular to the bilayer plane and the chains pack in the hexagonal methylene subcell. Translational search of a model based on a known diacyl phosphatidylcholine crystal structure indicates that a crystallographic residual minimum corresponds to a headgroup packing distance similar to values found for the dipalmitoyl analog at low relative humidity. The bilayer packing for the ether-linked phosphatidylcholine is therefore similar to the one reported for a sphingomyelin.  相似文献   

6.
Mixtures of 1,2-dipalmitoyl- and 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC and DHPC) in dispersion with excess water were studied by differential scanning calorimetry (DSC) and X-ray diffraction techniques. The transition parameters of the main gel-to-liquid crystalline transition show a monotonous dependence on the composition, indicating ideal miscibility of the two lipids, in keeping with the closely similar structures of the pure, hydrated lipids in the P beta' and L alpha states. The pre-transition shows a depression to a minimum temperature of 23 degrees C occurring around equimolar mixtures. Below the pre-transition temperatures, the L beta' gel phase of DPPC maintains bimolecular structure up to DHPC admixtures of 50 mol%, with adaptations in hydrocarbon chain packing and multilayer periodicity. On the side of DHPC, the interdigitated gel structure shows full solubility for DPPC up to equimolarity without major structural changes. The crystalline Lc-phase of DPPC exhibits immiscibility with DHPC, demonstrated by the fact that the subtransition is abolished already at less than 15 mol% DHPC. DHPC, below its subtransition, can accommodate up to 50 mol% DPPC within an interdigitated layer structure with unperturbed, crystalline hydrocarbon chain packing.  相似文献   

7.
The polymorphic behavior of symmetric diacid triacylglycerols (TGs), 1,3-dioleoyl-2-stearoyl (OSO), 2-elaidoyl (OEO), and 2-vaccinoyl (OVO) glycerols were studied by differential scanning colorimetry (DSC) and X-ray diffraction and compared with the corresponding monoacid TGs triolein (OOO), tristearin (SSS), trielaidin (EEE), and trivaccinin (VVV). The monoacid TGs formed a bilayered structure in all the polymorphic forms. On quenching from the melt, the diacid TGs OEO and OVO formed a bilayered (D = 45 A) beta'-phase with the exception of OSO, which formed a hexagonally packed bilayered (D = 52 A) alpha-phase. At -7 degrees C, the alpha-phase of OSO quickly transformed to a bilayered (D = 45 A) beta'-phase. Incubation at the beta'-phase melting temperature transformed OVO, OEO, and OSO into a trilayered (D = 65 A) beta-phase, where the 1,3-dioleoyl chains are segregated from the vaccinoyl, elaidoyl, or stearoyl chains into alternating layers. In summary, when all the acyl chains in a TG are the same (saturated, cis or trans unsaturated), the stable beta-phase packs into a bilayered structure. However, when the 1- and 3-acyl chains are cis unsaturated (bent) and the 2-acyl chain is either saturated or trans-unsaturated (straight), a bilayered beta'-phase can form, but transforms to a stable trilayered beta-phase, where the 2-acyl chains form a layer between two different layers of 1,3-oleoyl chains.  相似文献   

8.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

9.
Fourier transform infrared spectroscopy was used to study the metastability of 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) at temperatures near 0 degrees C. It was found that when DPPC is incubated at 2 degrees C for three days the two-dimensional acyl chain packing changes from one resulting in spectra typical of an orthorhombic subcell to one resembling that found in triclinically packed acyl systems. This transition proceeds in two stages. The first step, requiring less than one day, approximates first-order kinetics; the second stage proceeds with second- or higher-order kinetics. Comparison of spectra recorded at -36 degrees C with and without prior incubation at 2 degrees C shows that there are two stable low temperature forms of DPPC; that is, DPPC is metastable only within a narrow temperature range. A study of the thermotropic behavior in the range 0-45 degrees C shows that the subtransition near 15 degrees C is a transition from the alternate form to one with orthorhombic characteristics. Spectral changes at the pretransition and the main phase transition demonstrate that there are differences in behavior that are related to the thermal history of the sample.  相似文献   

10.
The thermotropic phase behavior of lipid bilayer model membranes composed of the cationic lipid 1,2-di-O-myristoyl-3-N,N,N-trimethylaminopropane (DM-TAP) was examined by differential scanning calorimetry, infrared spectroscopy and X-ray diffraction. Aqueous dispersions of this lipid exhibit a highly energetic endothermic transition at 38.4 degrees C upon heating and two exothermic transitions between 20 and 30 degrees C upon cooling. These transitions are accompanied by enthalpy changes that are considerably greater than normally observed with typical gel/liquid--crystalline phase transitions and have been assigned to interconversions between lamellar crystalline and lamellar liquid--crystalline forms of this lipid. Both infrared spectroscopy and X-ray diffraction indicate that the lamellar crystalline phase is a highly ordered, substantially dehydrated structure in which the hydrocarbon chains are essentially immobilized in a distorted orthorhombic subcell. Upon heating to temperatures near 38.4 degrees C, this structure converts to a liquid-crystalline phase in which there is excessive swelling of the aqueous interlamellar spaces owing to charge repulsion between, and undulations of, the positively charged lipid surfaces. The polar/apolar interfaces of liquid--crystalline DM-TAP bilayers are not as well hydrated as those formed by other classes of phospho- and glycolipids. Such differences are attributed to the relatively small size of the polar headgroup and its limited capacity for interaction with moieties in the bilayer polar/apolar interface.  相似文献   

11.
Taking advantage of the adequacy of the kinematical diffraction assumption for ab initio crystal structure analysis of long chain lipids with single crystal electron diffraction intensity data, the polymethylene chain packing in three microcrystalline polymorphs of 1,2-dipalmitoyl-rac-glycero-3-phosphoethanolamine was determined. The aliphatic chains of major crystal form pack in the new parallel/perpendicular orthorhombic methylene subcell already seen for three other compounds. The unit cell dimension s of this form are: a = 7.76 A, b = 10.03 A, c = 56.0 A. The two minor polymorphs pack in commonly-found subcells, i.e. perpendicular orthorhomibic (a(s) = 5.10 A, b(s) = 7.61 A) and hexagonal (a(s) = 4.68 A, gamma = 120 degrees). Similarities between the two orthorhombic subcells are discussed.  相似文献   

12.
Synthesis and polymorphism of 3-acyl-sn-glycerols   总被引:2,自引:0,他引:2  
3-Acyl-sn-glycerols with even-numbered saturated fatty acyl chains from decanoate to lignocerate were synthesized. Successful hydrolysis of the long acyl chain intermediate 1,2-isopropylidene-3-acyl-sn-glycerols from stearate to lignocerate was accomplished by applying the compounds to silica gel and exposing them to hydrogen chloride gas at -75 degrees C. The purity of the compounds was checked by boric acid impregnated thin-layer chromatography, 13C NMR, and reverse-phase high-pressure liquid chromatography. Differential scanning calorimetry and X-ray diffraction techniques were used to study the polymorphism of the compounds. In the beta phase obtained from solvent of crystallization, the acyl chain packing was in a two-dimensional oblique lattice with specific chain-chain interactions with a tilt angle of 55.4 degrees from the bilayer plane. The thickness of the region containing two glycerol head groups was 12.7 A. The phase transition enthalpy of melting for the beta phase was 1.06 kcal/mol of CH2. On being cooled these compounds crystallized reversibly to an unstable alpha phase, which on being further cooled underwent a second crystallization to a beta or beta' phase. The thermodynamic parameters and long spacings of these compounds in both beta and alpha phases were linear, indicating isostructural packing in each phase. The enthalpy of the melting transition of the alpha phase was 0.69 kcal/mol of CH2. In this phase, the chains were packed in a hexagonal lattice with nonspecific chain-chain interactions. The thickness of the head-group region (12.2 A) and the tilt angle (55 degrees) of the acyl chains in the alpha phase were very similar to those in the beta phase.  相似文献   

13.
The polymorphic phase behavior of aqueous dispersions of a homologous series of 1,2-di-O-acyl-3-O-(beta-D-glucopyranosyl)-sn-glycerols was studied by differential scanning calorimetry. At fast heating rates, unannealed samples of these lipids exhibit a strongly energetic, lower temperature transition, which is followed by a weakly energetic, higher temperature transition. X-ray diffraction studies have enabled the assignments of these events to a lamellar gel/liquid crystalline (chain-melting) phase transition and a bilayer/nonbilayer phase transition, respectively. Whereas the values for both the temperature and enthalpy of the chain-melting phase transition increase with increasing acyl chain length, those of the bilayer/nonbilayer phase transition show almost no chain-length dependence. However, the nature of the bilayer/nonbilayer transition is affected by the length of the acyl chain. The shorter chain compounds form a nonbilayer 2-D monoclinic phase at high temperature whereas the longer chain compounds from a true inverted hexagonal (HII) phase. Our studies also show that the gel phase that is initially formed on cooling of these lipids is metastable with respect to a more stable gel phase and that prolonged annealing results in a slow conversion to the more stable phase after initial nucleation by incubation at appropriate low temperatures. The formation of these stable gel phases is shown to be markedly dependent upon the length of the acyl chains and whether they contain an odd or an even number of carbon atoms. There is also evidence to suggest that, in the case of the shorter chain compounds at least, the process may proceed via another gel-phase intermediate. In annealed samples of the shorter chain compounds, the stable gel phase converts directly to the L alpha phase upon heating, whereas annealed samples of the longer chain glycolipids convert to a metastable gel phase prior the chain melging.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The miscibility properties of homologous cephalines (PEs) were studied by means of differential scanning calorimetry (DSC). The phase diagrams of 5 pseudo-binary cephaline/cephaline/water systems (50% water) are discussed. In the high temperature L alpha-phase, all the homologous cephalines of fatty acid chain length from C = 12 to C = 18 were completely miscible. On the other hand in the low temperature L beta-phase, a miscibility gap occurred in dependence on the differences of the acyl chain lengths. Further, a distinct succession of the phase diagram types was observed according to increasing chain length differences of the PEs: complete miscibility (systems di-(C12:O)-PE/di-(C14:O)-PE/H2O; di-(C14:O)-PE/di-C(16:O)-PE/H2O)----peritectic mixing behaviour (systems di-(C12:O)-PE/di-(C16:O)-PE/H2O; di-(C14:O)-PE/di-(C18:O)-PE/H2O)----eutectic mixing behaviour (system di-(C12:O)-PE/di-(C18:O)-PE/H2O). The change in the type of phase diagram from azeotropic to semi-azeotropic and from semi-azeotropic to eutectic is interpreted by means of the Landau theory.  相似文献   

15.
From data of sisingle crystal analysis of 12-D-hydroxyoctadecanoic acid methyl ester principles for the incorporation of hydroxyl groups into a hydrocarbon chain matrix can be deduced. In the crystalline compound infinite hydrogen bond systems are accommodated in an orthorhombic perpendicular (O) chain arrangement. The O hydrocarbon subcell is expanded towards a hexagonal packing pattern, allowing more space and optimal geometry for the hydrogen bond system. The arrangement of the bond system in the O subcell requires that hydrogen bonded carbon chains carry alternatingly hydroxyl roups with opposite configuration. For the enantiomeric compound this requirement is met by a head to tail packing of molecules in a single layer arrangement. The corresponding racemates on the other hand pack head to head in double layers as confirmed by X-ray powder and IR studies. In monolayers both enantiomers and racemates behave identicalyy. The hydrogen bonding of the hydroxyl groups apparently leads to the formation of lipid clusters, in which the geometric conditions for both a close packing of hydrocarbon chains and the formation of an extensive hydrogen bond system do not exist.  相似文献   

16.
The effect of 2,4-dichlorophenol (DCP) on the structures and phase transitions of fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes was studied using FT-Raman spectroscopy. Whereas the Raman frequency shifts of the most frequently investigated bands of C-C and C-H stretching regions only indicate the main phase transition (P(beta')-L(alpha)) of the pure DPPC/water system, the Raman shift of C-H scissoring vibration at 1440 cm(-1) was found to be able to reveal the pretransition (L(beta')-P(beta')) as well. Analyzing the spectral parameters of the trans band at 1128 cm(-1), which does not overlap with DCP vibrational modes, a continuous decrease of trans conformations was found with increasing DCP concentration at 26 degrees C accompanying the phase transitions L(beta')-P(beta') and P(beta')-L(alpha). The intensity ratio of the symmetrical and asymmetrical methylene stretching bands (at 2850 cm(-1) and 2880 cm(-1)), defined as the disorder parameter by Levin [Levin, I.W., 1985. Two types of hydrocarbon chain interdigitation in sphingomielin bilayers. Biochemistry 24, 6282-6286], indicated that in the interdigitated phase (L(I)) the order is markedly high and comparable with that of L(beta). Both the phase transition P(beta')-L(alpha) in the DCP/DPPC molar ratio range of 10/100-50/100 and the phase transition L(I)-L(alpha) led to a significant increase of disordered chains and the presence of DCP molecules induced a more disordered chain region than that observed in the L(alpha) phase of DPPC. Nevertheless, it was found that the L(alpha) phase with DCP contains approximately the same amount of trans conformers than that without DCP.  相似文献   

17.
Polymorphic influences on the phase behavior of two types of binary mixtures of saturated monoacid 1,3-propanediol esters (PADEs), dipalmitate/distearate (PP/SS) and dimyristate/distearate (MM/SS) were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and by solid fat content (SFC), hardness and microscopy measurements. Three stacking modes have been found in the PP/SS binary system. Mixed SS-PP bilayers were detected in all mixtures, SS-SS bilayers in x(PP)=0.0-0.4 mixtures and PP-PP bilayers in x(PP)=0.6-0.1 mixtures. Two different but close beta polymorphs and one beta' polymorph were detected for this system. beta' was only detected in x(PP)=0.5-0.9 mixtures for the mixed bilayers. For the MM/SS binary system, only MM-MM and SS-SS bilayers were detected and both solid phases crystallized in two different beta forms. XRD data evidenced clearly that the MM and SS components were completely immiscible in the solid state. The phase diagrams constructed using DSC data, exhibited a typical eutectic-type phase boundary. The presence of eutectics, the shape of the solidus lines as well as the analysis of the individual enthalpies of melting indicated typical phase separation for both systems. A thermodynamic study based on the Hildebrand equation and using the Bragg-Williams approximation for non-ideality of mixing confirmed the phase separation in the solid phase and suggested that the PP and SS were miscible in the liquid phase and that SS formed an ideal mixing with MM. Avrami analysis of SFC vs. time curves indicated heterogeneous nucleation and spherulitic crystal development from sporadic nuclei, and suggested that the nucleation rate was higher for the mixture at the eutectic composition. The relative hardness was correlated with the enthalpies, the final SFC and the microscopy measurements.  相似文献   

18.
Model membranes formed from 1,2-dihexadecyl-, 1,2-dipalmitoyl-, 1,2-ditetradecyl- or 1,2-dimyristoyl-rac-glycero-3-phosphocholine, deuterium-labelled at choline groups, in an excess of water were compared using 2H-NMR spectroscopy. The dynamics and conformation of the labelled choline segments were estimated based on spin-lattice relaxation time and residual quadrupole splittings. The trimethylammonium group of dialkyl phosphatidylcholine was shown to be more distant from the bilayer surface as compared with that of the diacyl analogues.  相似文献   

19.
The structural changes associated with a phase transition between the gel-phase bilayer (Lβ) in which the acyl chains pack in a hexagonal subcell, and a crystalline bilayer phase (LC1) where the acyl chains are packed in an orthorhombic subcell in a saturated monogalactosyldiacylglycero-water system are reported. The phase change is cooperative and takes place isothermally after the lamellar-gel phase has been held at 20°C for about 8 min. The transformation of the acyl chain subcell from hexagonal to orthorhombic induces a change in diffraction maxima observed in the region 0.6–0.7 nm which is interpreted as a change in packing of the galactose residues from an orthorhombic to hexagonal subcell. We conclude that the rearrangement of the acyl chains into a more closely packed subcell requires the head groups to reorient to reduce the steric hindrance between the bulky galactose residues.  相似文献   

20.
The thermal behaviour and structural changes associated with the phase transformation of 1,2-dipalmitoyl-sn-glycerol (DPG) were studied by means of simultaneous X-ray diffraction and differential scanning calorimetry. Metastable DPG solid phases are crystallized from the melted sample by thermal quenching. The metastable phase (alpha-phase) formed initially is converted into a stable phase (beta' phase) at approximately 50 degrees C on heating. It was found that the behaviour of the alpha- to beta'-phase transformation depends on the thermal history. DPG solid samples incubated at approximately 3 degrees C for more than 10 h after cooling transformed directly into the beta'-phase with heat release. On the other hand, in the solid samples without incubation, the alpha-phase once melted and then the crystallization of the beta'-phase occurred successively from the melted state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号