首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice heterozygously deficient in the p0 gene (P0(+/-)) are animal models for some forms of inherited neuropathies. They display a progressive demyelinating phenotype in motor nerves, accompanied by mild infiltration of lymphocytes and increase in macrophages. We have shown previously that the T lymphocytes are instrumental in the demyelination process. This study addresses the functional role of the macrophage in this monogenic myelin disorder.In motor nerves of P0(+/)- mice, the number of macrophages in demyelinated peripheral nerves was increased by a factor of five when compared with motor nerves of wild-type mice. Immunoelectron microscopy, using a specific marker for mouse macrophages, displayed macrophages not only in the endoneurium of the myelin mutants, but also within endoneurial tubes, suggesting an active role in demyelination. To elucidate the roles of the macrophages, we crossbred the myelin mutants with a spontaneous mouse mutant deficient in macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the P0-deficient double mutants also deficient in M-CSF, the numbers of macrophages were not elevated in the demyelinating motor nerves and demyelination was less severe. These findings demonstrate an active role of macrophages during pathogenesis of inherited demyelination with putative impact on future treatment strategies.  相似文献   

2.
In the development of multiple sclerosis (MS), (re)activation of infiltrating T cells by myelin-derived Ags is considered to be a crucial step. Previously, alpha B-crystallin has been shown to be an important myelin Ag to human T cells. Since alpha B-crystallin is an intracellular heat shock protein, the question arises at what stage, if any, during lesional development in MS this Ag becomes available for CD4+ T cells. In 3 of 10 active MS lesions, alpha B-crystallin could be detected inside phagocytic vesicles of perivascular macrophages, colocalizing with myelin basic protein and myelin oligodendrocyte glycoprotein (MOG). Although the detectability of MOG in phagosomes is considered as a marker for very recent demyelination, MOG was detected in more macrophages and in more lesions than alpha B-crystallin. The disappearance of alpha B-crystallin from macrophages even before MOG was confirmed by in vitro studies; within 6 h after myelin-uptake alpha B-crystallin disappears from the phagosomes. Alpha B-crystallin-containing macrophages colocalized with infiltrating T cells and they were characterized by expression of MHC class II, CD40, and CD80. To examine functional presentation of myelin Ags to T cells, purified macrophages were pulsed in vitro with whole myelin membranes. These macrophages activated both myelin-primed and alpha B-crystallin-primed T cells in terms of proliferation and IFN-gamma secretion. In addition, alpha B-crystallin-pulsed macrophages activated myelin-primed T cells to the same extent as myelin-pulsed macrophages, whereas myelin basic protein-pulsed macrophages triggered no response at all. These data indicate that, in active MS lesions, alpha B-crystallin is available for functional presentation to T cells early during inflammatory demyelination.  相似文献   

3.
The exact mechanisms leading to CNS inflammation and myelin destruction in multiple sclerosis and in its animal model, experimental allergic encephalomyelitis (EAE) remain equivocal. In both multiple sclerosis and EAE, complement activation is thought to play a pivotal role by recruiting inflammatory cells, increasing myelin phagocytosis by macrophages, and exerting direct cytotoxic effects through the deposition of the membrane attack complex on oligodendrocytes. Despite this assumption, attempts to evaluate complement's contribution to autoimmune demyelination in vivo have been limited by the lack of nontoxic and/or nonimmunogenic complement inhibitors. In this report, we used mice deficient in either C3 or factor B to clarify the role of the complement system in an Ab-independent model of EAE. Both types of complement-deficient mice presented with a markedly reduced disease severity. Although induction of EAE led to inflammatory changes in the meninges and perivascular spaces of both wild-type and complement-deficient animals, in both C3(-/-) and factor B(-/-) mice there was little infiltration of the parenchyma by macrophages and T cells. In addition, compared with their wild-type littermates, the CNS of both C3(-/-) and factor B(-/-) mice induced for EAE are protected from demyelination. These results suggest that complement might be a target for the therapeutic treatment of inflammatory demyelinating diseases of the CNS.  相似文献   

4.
Experimental allergic encephalomyelitis (EAE) is a widely used animal model of the human demyelinating disease multiple sclerosis. EAE is initiated by immunization with myelin antigens in adjuvant or by adoptive transfer of myelin-specific T cells, resulting in inflammatory infiltrates and demyelination in the central nervous system. Induction of EAE in rodents typically results in ascending flaccid paralysis with inflammation primarily targeting the spinal cord. This protocol describes passive induction of EAE by adoptive transfer of T cells isolated from mice primed with myelin antigens into na?ve mice. The advantages of using this method versus active induction of EAE are discussed.  相似文献   

5.
6.
Following intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV), susceptible mouse strains develop a chronic demyelinating disease characterized by mononuclear cell-rich infiltrates in the central nervous system. Current evidence strongly supports an immune-mediated basis for myelin breakdown, with an effector role proposed for TMEV-specific, major histocompatibility class II-restricted delayed-type hypersensitivity, which temporally correlates with disease onset and remains chronically elevated in susceptible mice. This study examined the fine specificity of class II-restricted T cell responses in TMEV-infected mice to better define the relevant virus-encoded T cell determinant(s) responsible for triggering the demyelinating process, and to determine if class II-restricted neuroantigen-specific autoimmune responses could be detected in mice with TMEV-induced demyelination. The data clearly show that T cell responses in TMEV-infected mice are directed against determinants shared by closely related TMEV strains and are cross-reactive with related picornaviruses, such as encephalomyocarditis virus. In contrast, class II-restricted autoimmune responses against syngeneic mouse spinal cord homogenate and the two major protein components of myelin, myelin basic protein and proteolipid protein, are not demonstrable in susceptible SJL/J mice undergoing chronic TMEV-induced demyelinating disease, but are readily seen in SJL/J mice displaying chronic, relapsing experimental allergic encephalomyelitis. Cross-reactivity (or lack thereof), as determined by functional T cell analyses, was found to correlate with the extent of exact amino acid homology between the TMEV capsid proteins, the two neuroantigens, and related picornaviruses. The data thus do not support a major role for autoimmune responses against myelin proteins in TMEV-induced demyelinating disease, but are consistent with our previously proposed hypothesis that TMEV-specific T cell responses constitute a major effector mechanism of myelin breakdown.  相似文献   

7.
Mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating disease with symptoms of hindlimb paralysis. Histological examination of the brains and spinal cords of these animals reveals the presence of large numbers of activated macrophages/microglia. In two other experimental models of demyelination, experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus-induced demyelination, depletion of hematogenous macrophages abrogates the demyelinating process. In both of these diseases, early events in the demyelinating process are inhibited by macrophage depletion. From these studies, it was not possible to determine whether infiltrating macrophages were required for late steps in the process, such as myelin removal. In this study, we show that when macrophages are depleted with either unmodified or mannosylated liposomes encapsulating dichloromethylene diphosphate, the amount of demyelination detected in MHV-infected mice is not affected. At a time when these cells were completely depleted from the liver, approximately equivalent numbers of macrophages were present in the spinal cords of control and drug-treated animals. These results suggest that blood-borne macrophages are not required for MHV-induced demyelination and also suggest that other cells, such as perivascular macrophages or microglia, perform the function of these cells in the presence of drug.  相似文献   

8.
Cultures of myelinated SJL/J fetal mouse spinal cord were incubated with serum and lymphoid cells from syngeneic animals with experimental allergic encephalomyelitis (EAE) induced by syngeneic spinal cord homogenate (SSCH) in complete Freund's adjuvant or others injected with complete Freund's adjuvant alone. After 24 or 48 h of exposure, demyelination was determined by light microscopic examination and quantification of 2',3'-cyclic nucleotide 3'-phosphohydrolase activity. Cultures exposed to spleen or lymph node cells from SSCH-sensitized animals showed the greatest alterations in myelin and decreases in 2',3'-cyclic nucleotide 3'-phosphohydrolase activity whereas serum from these animals had less effect. Cells and serum from complete Freund's adjuvant-injected control animals also induced structural changes in myelin that were significantly less than changes induced by cells and serum from animals with EAE. These experiments show that lymphoid cells and serum obtained from SJL/J mice with acute EAE affected myelin biochemistry and morphology in syngeneic CNS cultures.  相似文献   

9.
Diemel  L.T.  Copelman  C.A.  Cuzner  M.L. 《Neurochemical research》1998,23(3):341-347
Hematogenous macrophages and resident brain microglia are agents of demyelination in multiple sclerosis (MS) and paradoxically may also participate in remyelination. In vitro studies have shown that macrophage enrichment of aggregate brain cultures promotes myelination per se and enhances the capacity to remyelinate following a demyelinating episode. It has been hypothesized that remyelination in MS is implemented by surviving dedifferentiated oligodendrocytes or by newly recruited progenitors that migrate, proliferate and synthesize myelin in response to signalling molecules in the local environment. We postulate that macrophage-derived cytokines or growth factors may directly or indirectly promote oligodendroglial proliferation and differentiation, contributing to myelin repair in inflammatory demyelinating disease.  相似文献   

10.
Kim TS  Perlman S 《Journal of virology》2005,79(11):7113-7120
Mouse hepatitis virus strain JHM causes a chronic demyelinating disease in susceptible strains of rodents. Demyelination does not develop in infected RAG1-/- (recombination activation gene-deficient) mice but can be induced by several experimental interventions, including adoptive transfer of virus-specific T cells or antibodies. A common feature of demyelination in these models is extensive infiltration of macrophages/microglia into the white matter. The data obtained thus far do not indicate whether macrophage/microglia infiltration, in the absence of T cells or antibody, is sufficient to mediate demyelination. To determine whether the expression of a single macrophage chemoattractant, in the context of virus infection, could initiate the demyelinating process, we engineered a recombinant coronavirus that expressed the chemokine CCL2/monocyte chemoattractant protein-1. CCL2 has been implicated in macrophage infiltration into the central nervous system and is involved in demyelination in many experimental models of demyelination. Extensive macrophage/microglia infiltration and demyelination has developed in RAG1-/- mice infected with this recombinant virus. Thus, these results suggest that the minimal requirement for demyelination is increased expression of a single macrophage-attracting chemokine in the context of an inflammatory milieu, such as that induced by a viral infection.  相似文献   

11.
Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.  相似文献   

12.
Various animal models are available for studying human multiple sclerosis (MS). Most of them model the initial phase of MS,including the immune-triggered attack of the myelin membrane and/or oligodendrocytes and, occasionally, demonstrate there mission and relapsing phases. However, few mimic the late chronic demyelinating phase. Overexpression of the proteolipid protein gene (Plp) causes a unique demyelinating disorder in mice in which normal-appearing myelin forms early in life and chronic demyelination occurs later. We found that remyelination is severely affected in this late demyelinating phase, but is not caused by deprivation of oligodendrocyte progenitors expressing PDGF receptor alpha (PDGFRa) and Olig2, which are present at an even higher number in the demyelinated white matter of the mutants than in wild-type controls. Furthermore, mature oligodendrocytes containing PLP were observed, but failed to remyelinate. The ability of oligodendrocytes from older transgenic animals to produce a myelin membrane-like structure was not impaired when cultured in vitro, which indicates that the lack of remyelination is not simply caused by changes in the intrinsic properties of the oligodendrocytes. Glial activation also occurred much earlier than active demyelination in mutant mice. Thus, in addition to intrinsic mechanisms, extrinsic mechanisms might also have an important role in defects of remyelination. These features are also observed in patients at a late stage of MS, leading to chronic demyelinating lesions. Thus, this mouse model partly mimics the late stage of MS and can be used to study the cause of inhibition of remyelination.  相似文献   

13.
The long-term consequences of adenovirus-mediated conditional cytotoxic gene therapy for gliomas remain uncharacterized. We report here detection of active brain inflammation 3 months after successful inhibition of syngeneic glioma growth. The inflammatory infiltrate consisted of activated macrophages/microglia and astrocytes, and T lymphocytes positive for leucosyalin, CD3 and CD8, and included secondary demyelination. We detected strong widespread herpes simplex virus 1 thymidine kinase immunoreactivity and vector genomes throughout large areas of the brain. Thus, patient evaluation and the design of clinical trials in ongoing and future gene therapy for brain glioblastoma must address not only tumor-killing efficiency, but also long-term active brain inflammation, loss of myelin fibers and persistent transgene expression.  相似文献   

14.
T cell lines specific for bovine myelin proteolipid apoprotein (PLP) were established from SJL/J mice. The line cells bore surface phenotypes of T helper/inducer cells (Lyt-1+, Lyt-2-, L3T4+) and responded well to bovine, rat, and guinea pig PLP but not to myelin basic protein. One line responded to major PLP, and another responded to both major PLP and DM-20, which are the two major intrinsic membrane proteins of the central nervous system (CNS) myelin. Intraperitoneal inoculation of 4 to 30 X 10(6) PLP-activated line cells followed by injection of pertussis vaccine induced acute inflammatory disease of the CNS, with typical clinical signs of EAE mostly in a week in recipient mice that had been treated with low-dose irradiation. Almost all animals recovered completely, and two of the 12 animals relapsed 42 or 75 days after inoculation. The lesions were restricted to the CNS and were characterized by perivascular and parenchymal infiltration of inflammatory cells, fibrin deposit, and demyelination. In the severe lesions, axons were also damaged. These observations suggest that PLP is a definite encephalitogen, and PLP-sensitized effector T cells induce inflammatory demyelination in the CNS.  相似文献   

15.
To investigate a role for T lymphocytes in primary demyelination of central nervous system (CNS) tissue, antigen-specific T cell lines sensitized to myelin-associated and myelin-unrelated antigens were developed from SJL mice and tested on myelinated organotypic cultures of syngeneic spinal cord. Demyelination was assessed morphologically by electron microscopy. Antigen responsiveness and specificity, and the phenotypes of the cell lines, were determined by thymidine uptake (3H-TdR) assays and flow cytometry (FC), respectively. Although all T cell lines caused pathologic changes in myelin, the CNS-antigen-specific line induced the most pronounced effects. 3H-TdR uptake assays and FC showed that after three cycles of incubation in the presence of interleukin-2 (IL-2) or antigen, the T cell lines had increased specificity and responsiveness to the priming antigen and were enriched for the L3T4 (helper/inducer) phenotype. This represents the first direct demonstration of T-cell-mediated demyelination, supports a role for the helper/inducer subset in CNS lesion development, and may prove relevant to the human demyelinating disease multiple sclerosis.  相似文献   

16.
Experimental autoimmune encephalomyelitis is a T cell-mediated demyelinating disease of the CNS that serves as a model for the human disease multiple sclerosis. Increased expression of the chemokine CCL2 in the CNS has been demonstrated to be important in the development of demyelinating disease presumably by attracting inflammatory cells. However, the mechanism of how CCL2 regulates disease pathogenesis has not been fully elucidated. Using radiation bone marrow chimeric mice we demonstrated that optimum disease was achieved when CCL2 was glia derived. Furthermore, CNS production of CCL2 resulted in the accumulation of iNOS-producing CD11b(+)CD11c(+) dendritic cells and TNF-producing macrophages important for demyelination. Lack of glial-derived CCL2 production did not influence experimental autoimmune encephalomyelitis by altering either Th1 or Th17 cells, as there were no differences in these populations in the CNS or periphery between groups. These results demonstrate that the glial-derived CCL2 is important for the attraction of TNF- and iNOS-producing dendritic cells and effector macrophages to the CNS for development of subsequent autoimmune disease.  相似文献   

17.
A common feature of demyelinating diseases such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis in rodents is the marked elevation in the expression of the major histocompatibility complex (MHC) antigens in the involved sites. By specific targeting of a syngeneic MHC class I gene to oligodendrocytes, we have generated transgenic mice which not only exhibit severe involuntary tremors and develop tonic seizures but also show extensive demyelination in both the brain and the spinal cord. The fact that demyelination in these mice occurs in the absence of immune infiltration dismisses an autoimmune involvement but suggests that the MHC class I antigens play a direct role in inducing disease. Our findings lend support to the possibility that demyelinating diseases are induced by infectious agents such as viruses which can either directly activate MHC gene expression in oligodendroglia or indirectly activate expression through the release by reactive T cells of gamma interferon in the brain.  相似文献   

18.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) produces chronic demyelination and persistent infection in the central nervous system (CNS) of susceptible SJL mice. This series of experiments examined the contribution of humoral immunity and C to myelin destruction. As in multiple sclerosis, mice persistently infected with TMEV had elevated levels of IgG and oligoclonal bands in the cerebrospinal fluid (CSF). Immunoblot studies revealed that even in animals exhibiting profound demyelination, IgG in the serum and CSF was directed primarily at virus antigen rather than at normal myelin components. Inflammatory cells positive for Ig were distributed mainly around blood vessels, but occasionally they infiltrated the spinal cord parenchyma. Rare examples of myelin sheaths positive for IgG were found by immunoelectron microscopy in spinal cord sections from infected mice; the third component of complement (C3) was commonly found in the walls of CNS blood vessels but not on myelin. Neither serum nor CSF IgG from infected mice bound to myelin sheaths or other CNS components in sections of normal syngeneic spinal cord. There were significantly more demyelinating lesions in infected mice depleted of C components with cobra venom factor. These data do not support a humoral autoimmune basis for the CNS demyelination that occurs in association with persistent TMEV infection. However, the humoral immune response directed at TMEV antigens may either limit virus spread or promote virus persistence.  相似文献   

19.
Mac-1 (CD18/CD11b) is a member of the beta2-integrin family of adhesion molecules and is implicated in the development of many inflammatory diseases. The role of Mac-1 in the development of CNS demyelinating diseases, including multiple sclerosis, is not understood, and Ab inhibition studies in experimental allergic encephalomyelitis (EAE), the animal model for multiple sclerosis, have produced conflicting findings. To clarify these results and to determine Mac-1-mediated mechanisms in EAE, we performed EAE using Mac-1-deficient mice. Mac-1 homozygous-deficient, but not Mac-1 heterozygous-deficient mice, had significantly delayed onset and attenuated EAE. Leukocyte infiltration was similar in both groups of mice in early disease but significantly reduced in spinal cords of receptor-deficient mice in late disease. Adoptive transfer of Ag-restimulated T cells from wild-type to Mac-1-deficient mice produced significantly attenuated EAE, whereas transfer of Mac-1-deficient Ag-restimulated T cells to control mice failed to induce EAE. T cells from myelin oligodendrocyte glycoprotein (MOG)35-55 peptide-primed Mac-1-deficient mice displayed an altered cytokine phenotype with elevated levels of TGF-beta and IL-10, but reduced levels of IL-2, IFN-gamma, TNF-alpha, IL-12, and IL-4 compared with control mice. Mac-1-deficient T cells from primed mice proliferated comparably to that of control T cells on MOG35-55 restimulation in vitro. However, the draining lymph nodes of MAC-1-deficient mice on day 10 after MOG35-55 immunization contained lower frequency of blast T cells than in control mice, suggesting poor priming. Our results indicate that Mac-1 expression is critical on both phagocytic cells and T cells for the development of demyelinating disease.  相似文献   

20.
In most demyelinating diseases, macrophages are believed to be active agents of myelin destruction. In experimental encephalomyelitis, these cells appear to strip off and ingest the myelin lamellae, and myelin debris has been observed within the cell body. We show here in vitro conditions in which rat peritoneal macrophages phagocytose and metabolize CNS myelin lipids. Purified rat myelin, prelabeled in vivo with [14C]acetate, was incubated with preimmune serum or rabbit antiserum to rat CNS myelin and added to macrophage monolayers. Myelin opsonized with antimyelin antibodies was more readily phagocytosed and metabolized by cultured macrophages than untreated myelin or that preincubated with preimmune serum. In the presence of macrophages, levels of myelin polar lipids and cholesterol decreased, whereas radioactive cholesterol ester and triglyceride accumulated. Up to five times as much radioactive cholesterol ester and about twice as much triglyceride accumulated in macrophage cultures containing antibody-treated myelin as in cultures fed preimmune serum-treated myelin or in those incubated with untreated myelin. Both the fatty acid and the cholesterol from cholesterol ester contained radioactive label; therefore, both were derived at least partly from the radioactive myelin lipid. Antiserum to myelin purified from peripheral nerve was almost as effective as that to CNS myelin in stimulating cholesterol metabolism, whereas antiserum to galactocerebroside was about 70% as active. Antiserum to basic protein had less effect, whereas antiserum to the myelin-associated glycoprotein and proteolipid protein was inactive. Of the polar lipids, ethanolamine phosphatide was most degraded in both the antiserum- and preimmune serum-treated myelin, with the diacyl form and plasmalogen form degraded about equally. These experiments indicate that myelin-specific antibodies in inflammatory CNS lesions may participate in and stimulate macrophage-mediated demyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号