共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells 总被引:10,自引:2,他引:10
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone. 相似文献
2.
Effectiveness of human mesenchymal stem cells derived from bone marrow cryopreserved for 23-25 years
Objective
To evaluate long-term cryopreserved human bone marrow cells (BMCs) as a source of functional mesenchymal stem cells (MSCs).Methods
Samples of human BMCs that were cryopreserved for 23–25 years (n = 20) were thawed to obtain an initial culture and a primary culture (P0) that was propagated through five passages (P1–P5) to obtain MSCs. Freshly collected human bone marrow samples (n = 20) were used as controls for comparison of efficiency of recovery and growth characteristics of MSCs. P3 cultures were tested for their capacity to differentiate into osteoblasts, adipocytes, and neuronal cells. Appropriate staining, immunohistochemical and biochemical methods were employed to ascertain cell type identities at different stages of culturing.Results
In the initial culture, the cell adherence rate of the cryopreserved cells was significantly lower than that of controls (19.7% vs. 38.2%, p < 0.05) while the relative rate of recovery of MSCs was only 48.5 ± 8.6% in P0. At the end of P3, fibroblast-like cells accounted for about 95% of cells in both cryopreserved and control groups (p > 0.05). These cells were positive for essential MSC surface molecules (CD90, CD105, CD166, CD44, CD29, CD71, CD73) and negative for haematopoietic and endothelial cell markers (CD45, CD34, HLA-DR). The cell growth and cell cycle patterns were similar for both groups. MSCs at P3 from both groups had similar capacities to differentiate in vitro into osteoblasts, adipocytes, and neuronal cells.Conclusion
Using the methods described here, long-term (23–25 years) cryopreserved human BMCs can be successfully cultivated to obtain MSCs that have good differentiation capabilities. 相似文献3.
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. 相似文献
4.
5.
Mesenchymal stem cells from cryopreserved human umbilical cord blood 总被引:32,自引:0,他引:32
Lee MW Choi J Yang MS Moon YJ Park JS Kim HC Kim YJ 《Biochemical and biophysical research communications》2004,320(1):273-278
Umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, but the presence of mesenchymal stem cells (MSCs) in UCB has been disputed and it remains to be validated. In this study, we examined the ability of cryopreserved UCB harvests to produce cells with characteristics of MSCs. We were able to obtain homogeneous plastic adherent cells from the mononuclear cell fractions of cryopreserved UCB using our culture conditions. These adherent cell populations exhibited fibroblast-like morphology and typical mesenchymal-like immunophenotypes (CD73+, CD105+, and CD166+, etc.). These cells presented the self-renewal capacity and the mesenchymal cell-lineage potential to form bone, fat, and cartilage. Moreover, they expressed mRNAs of multi-lineage genes including SDF-1, NeuroD, and VEGF-R1, suggesting that the obtained cells had the multi-differentiation capacity as bone marrow-derived MSCs. These results indicate that cryopreserved human UCB fractions can be used as an alternative source of MSCs for experimental and therapeutic applications. 相似文献
6.
A Ia Fridenshte?n 《Ontogenez》1991,22(2):189-197
This paper presents literature and author's own data demonstrating that bone marrow contains determined osteogenic precursor cells with high potential to differentiation. They are stem cells of the bone and belong to the stromal cell line of the bone marrow which is histogenetically independent of hemopoietic cells. The paper presents detailed analysis of bone marrow stromal cells (CFUf) as well as of their osteogenic properties and requirements in growth factors. In conclusion mutual growth-stimulating interactions in the system of hemopoietic stromal cells are reviewed. 相似文献
7.
L Kass 《Stain technology》1990,65(5):211-230
Traditionally, blood and bone marrow cells have been identified based on their characteristic shapes and colors when stained with one of several panoptic stains including Wright's or Giemsa's. As questions arose regarding the origin of normal and leukemic cells, cytochemical stains were developed. These stains help identify cells on the basis of a distinctive metabolite or enzyme. As part of an ongoing tradition in which textile dyes are used for biological staining, several new stains have been applied to hematologic staining. These include C.I. basic blue 41, basic blue 141, basic blue 93, and an asymmetrical polymethine dye. As additional cell-selective stains are developed, we can anticipate further improvements in our ability to identify normal and malignant hematopoietic cells. 相似文献
8.
Stem cells of the bone marrow, including hematopoietic stem cells (HSC), mesenchymal stem cells (MSC) and hepatic progenitors were reported to give rise to hepatocytes by both transdifferentiation and cellular fusion. Transdifferentiation was observed without liver damage although significant numbers of stem cell derived hepatocytes were not described. Cellular fusion was demonstrated in the presence of a proliferation stimulus in conjunction with impaired intrinsic liver regeneration capacity. Here, we review potential therapeutic applications of stem cell derived hepatocytes depending on how they emerge. Stem cells turning into hepatocytes by transdifferentiation introduce new functioning liver cells into a diseased organ, which can support intrinsic liver regeneration or bridge the time gap until a definitive treatment is available. When cellular fusion is the mechanism behind stem cell plasticity, however, no new cells emerge in the first place, whereas new genetic material is introduced. The fusion cell thereby acquires a selective advantage over resident hepatocytes allowing for extensive proliferation and liver repopulation. Therefore genetic deficiencies might be the predominant target for cell fusion therapies. We conclude that transdifferentiation and cellular fusion might be powerful tools for the therapy of liver diseases in the future and we propose the introduction of artificial cell fusion as well as stem cell differentiation as therapeutic options. 相似文献
9.
10.
《Biotechnic & histochemistry》2013,88(7):516-528
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow. 相似文献
11.
12.
Fereshteh Azedi Somaieh Kazemnejad Amir Hassan Zarnani Masoud Soleimani Amir Shojaei Shaghayegh Arasteh 《Molecular biology reports》2017,44(1):169-182
In order to characterize the potency of menstrual blood stem cells (MenSCs) for future cell therapy of neurological disorders instead of bone marrow stem cells (BMSCs) as a well-known and conventional source of adult stem cells, we examined the in vitro differentiation potential of these stem cells into neural-like cells. The differentiation potential of MenSCs to neural cells in comparison with BMSCs was assessed under two step neural differentiation including conversion to neurosphere-like cells and final differentiation. The expression levels of Nestin, Microtubule-associated protein 2, gamma-aminobutyric acid type B receptor subunit 1 and 2, and Tubulin, beta 3 class III mRNA and/or protein were up-regulated during development of MenSCs into neurosphere-like cells (NSCs) and neural-like cells. The up-regulation level of these markers in differentiated neural-like cells from MenSCs was comparable with differentiated cells from BMSCs. Moreover, both differentiated MenSCs and BMSCs expressed high levels of potassium, calcium and sodium channel genes developing functional channels with electrophysiological recording. For the first time, we demonstrated that MenSCs are a unique cell population with differentiation ability into neural-like cells comparable to BMSCs. In addition, we have introduced an approach to generate NSCs from MenSCs and BMSCs and their further differentiation into neural-like cells in vitro. Our results hold a promise to future stem cell therapy of neurological disorders using NSCs derived from menstrual blood, an accessible source in every woman. 相似文献
13.
无论是在体外实验、还是在体内实验,MSCs都可以向中枢神经系统(CNS)神经细胞分化,但争议颇多。因为功能性神经元不仅要具有典型神经元的形态、特异性标记,还要求具有可兴奋性、能和其他神经元形成突触联系、产生突触电位等,所以对于骨髓间充质干细胞是否能诱导出真正具有功能的神经元存在很大分歧。在此对MSCs向神经细胞诱导分化研究的现况、存在的问题及发展前景给以综述。 相似文献
14.
15.
Rhythms in human bone marrow and blood cells 总被引:9,自引:0,他引:9
In 24h studies of bone marrow (BM), circadian stage-dependent variations were demonstrated in the proliferative activity of BM cells from subsets of 35 healthy diurnally active men. On an average, the percentage of total BM cells in deoxyribonucleic acid (DNA) synthesis phase was 188% greater at midday than at midnight (circadian rhythm: p = 0.018; acrophase or peak time of 13: 16h). Patients with malignant disease (n = 15) and a normal cortisol circadian rhythm showed higher fractions of BM cells in S-phase at midday. Colony-forming units--granulocyte/macrophage (CFU-GM), an indicator of myeloid progenitor cells, showed the same circadian variation as DNA S-phase (average range of change or ROC = 136%; circadian rhythm: p < 0.001; acrophase of 12:09h). Deoxyribonucleic acid S-phase and CFU-GM in BM both showed a circannual rhythm (p = 0.015 and 0.008) with an identical acrophase of August 12. The daily peak in BM glutathione content, a tripeptide involved in cellular defense against cytotoxic damage, preceded BM proliferative peaks by 4-5 h (ROC = 31-90%; circadian rhythm: p = 0.05; acrophase of 08:30h). Myeloid (ROC = 57%; circadian rhythm: p = 0.056; acrophase at 08:40h) and erythroid (ROC = 26%; circadian rhythm: p = 0.01; acrophase of 13:01h) precursor cells were positively correlated (r = 0.41; p < 0.001), indicating a circadian temporal relationship and equal influence on S-phase of total BM cells. Yield of positive selected CD34+ progenitor stem cells also showed significant circadian variation (ROC = 595%; circadian rhythm: p = 0.02; acrophase of 12:40h). Thus, the temporal synchrony in cell cycling renders BM cells more sensitive at specific times to hematopoietic growth factors and cell cycle-specific cytotoxic drugs. Moreover, proper timing of BM harvesting may improve progenitor cell yield. When using marker rhythms in the blood to allow for individualized timing of BM procedures, the times of low values in white blood corpuscles, neutrophils, and lymphocytes and high values in cortisol were predictive of the times of highest BM erythroid, myeloid, and total S-phase numbers occurring in the following 12 h. 相似文献
16.
Using the hematopoietic colony technique, we have investigated the repopulating potential of bone marrow cells and leukocytes of blood from normal mice and have demonstrated that the frequency of hematopoietic stem cells in bone marrow is 50 to 150 times that of stem cells in the circulating blood. The differentiation capacity of these stem cells has also been examined. Results of comparative studies of the serial sections of hematopoietic colonies formed from marrow and blood leukocytes indicate that the differentiation capacity of stem cells from marrow and blood is similar, and that at least 80% of these cells differentiate along a single cell line. Thus, peripheral blood stem cells can effect a complete hematopoietic graft, establishing in the host, donor red cells, granulocytes, and platelets. The possibility that blood leukocytes may serve as a potential source of stem cells for hematopoietic transplants has been considered. Although blood contains stem cells, their frequency is so low as to make it unlikely that they would become a useful source of precursor cells for transplantation purposes. 相似文献
17.
It was shown using complement-dependent cytolysis and monoclonal antibodies against CD4, CD8, and NK1.1 antigens that the cortisone-resistant CD3+4-8-NK1.1(-)-thymocytes spontaneously secreted a chemotactic transmitter inducing the release and directed migration of bone marrow cells. When estimating the general profile of the cytokines of these thymocytes by PCR with revertase, it was demonstrated the cells in question did not express cytokines with colony stimulating activities (SCF, IL-3, or GM-CSF) or cytokines affecting the migration of bone marrow stem elements (IL-2, 4, or 7). In addition, an active expression of gene bcl-2 was detected. Thus, the chemotactic cytokine inducing the release of bone marrow stem elements is a product of the cortisone-resistant long-living CD3+4-8-NK1.1(-)-T-cells of the thymus. 相似文献
18.
Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells 总被引:1,自引:0,他引:1
The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type. 相似文献
19.
Yueying Li Jing He Fengchao Wang Zhenyu Ju Sheng Liu Yu Zhang Zhaohui Kou Yanfeng Liu Tao Cheng Shaorong Gao 《遗传学报》2010,37(7):431-439
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs. 相似文献
20.
The proliferation of human bone marrow mesenchymal stem cells (MSCs) employing xeno-free materials not containing fetal calf serum (FCS) and porcine trypsin was investigated for the regenerative medicine of cartilage using MSCs. Four sequential subcultivations of MSCs using a medium containing 10% FCS and recombinant trypsin (TrypLESelect™) resulted in cell growth comparable to that with porcine trypsin. There was no apparent difference in the cell growth and morphology between two kinds of MSC stored in liquid nitrogen using 10% FCS plus DMSO or serum-free TC protector™. MSCs were isolated from human bone marrow cells, stored in liquid nitrogen, and sequentially subcultivated four times employing conventional materials that included FCS, porcine trypsin, and DMSO, or xeno-free materials that included serum-free medium (MesenCult-XF™), TC protector™ and TrypLESelect™. Cells in the culture using the xeno-free materials maintained typical fibroblast-like morphology and grew more rapidly than the cells in the culture using the conventional materials, while the cell surface markers of MSCs (CD90 and CD166) were well maintained in both cultures. Chondrogenic pellet cultures were carried out using these subcultivated cells and a medium containing TGFβ3 and IGF1. The pellet culture using cells grown with the xeno-free materials showed an apparently higher gene expression of aggrecan, a chondrocyte marker, than the pellet culture using cells grown with the conventional materials. Consequently, MSCs that are isolated, stored, and grown using the xeno-free materials including the serum-free medium (MesenCult-XF™), TC protector™, and recombinant trypsin (TrypLESelect™) might be applicable for regenerative medicine of cartilage. 相似文献