首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl- ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl- in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl-, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.  相似文献   

2.
Two different groups of haloalkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria belonging to the genera Thioalkalimicrobium and Thioalkalivibrio have recently been discovered in highly alkaline and saline soda lakes. To understand response to their extreme environment and different occurrence in soda lakes, the growth kinetics and competitive behavior of several representatives have been characterized in detail using batch and pH-controlled continuous cultivation. The bacteria belong to the true alkaliphiles, growing within the pH range 7.5-10.6 with maximum growth rate and maximum growth yield at pH 9.5-10. On the basis of their response to salt content, three groups can be identified. All the Thioalkalimicrobium strains and some of the Thioalkalivibrio strains belonged to the moderate halophiles. Some of the Thioalkalivibrio strains from hypersaline soda lakes were extremely salt-tolerant and capable of growth in saturated soda brines. The Thioalkalimicrobium strains demonstrated relatively high specific growth rates, low growth yield, high maintenance, and extremely high rates of thiosulfate and sulfide oxidation. In contrast, the Thioalkalivibrio strains, in general, were slow-growing, high-yield organisms with lower maintenance and much lower rates of oxidation of sulfide and thiosulfate. Moreover, the latter survived starvation much better than Thioalkalimicrobium. Different growth characteristics and salt resistance appear to determine the outcome of the enrichment cultures from different soda lakes: Thioalkalimicrobium dominated in the enrichments with freshly obtained samples from diluted soda lakes at low-medium salinity, while Thioalkalivibrio was the predominant organism in enrichments from aged samples and at hypersaline conditions. In mixed thiosulfate-limited chemostat cultures at low salinity, Thioalkalimicrobium strains (mu(max)=0.33 h(-1)) out-competed Thioalkalivibrio strains (mu(max)=0.15 h(-1)) at D>0.02 h(-1). The overall results suggest that Thioalkalimicrobium and Thioalkalivibrio represent two different ecological strategies.  相似文献   

3.
Starch-hydrolyzing bacteria from Ethiopian soda lakes   总被引:5,自引:0,他引:5  
Alkaliphilic bacteria were isolated from soil and water samples obtained from Ethiopian soda lakes in the Rift Valley area--Lake Shala, Lake Abijata, and Lake Arenguadi. Starch-hydrolyzing isolates were selected on the basis of their activity on starch agar plate assay. Sixteen isolates were chosen, characterized, and subjected to 16S rRNA gene sequence analysis. All the isolates were gram positive and catalase- and beta-galactosidase positive. All isolates except one were motile endospore-forming rods and were found to be closely related to the Bacillus cluster, being grouped with Bacillus pseudofirmus, Bacillus cohnii, Bacillus vedderi, and Bacillus agaradhaerens. The one exception had nonmotile coccoid cells and was closely related to Nesterenkonia halobia. The majority of the isolates showed optimal growth at 37 degrees C and tolerated salinity up to 10% (w/v) NaCl. Both extracellular and cell-bound amylase activity was detected among the isolates. The amylase activity of two isolates, related to B. vedderi and B. cohnii, was stimulated by ethylenediaminetetraacetic acid (EDTA) and inhibited in the presence of calcium ions. Pullulanase activity was expressed by isolates grouped with B. vedderi and also most of the isolates clustered with B. cohnii; cyclodextrin glycosyltransferase was expressed by most of the B. agaradhaerens-related strains. Minor levels of alpha-glucosidase activity were detected in all the strains.  相似文献   

4.
In this paper we describe denitrification at extremely high salt and pH in sediments from hypersaline alkaline soda lakes and soda soils. Experiments with sediment slurries demonstrated the presence of acetate-utilizing denitrifying populations active at in situ conditions. Anaerobic enrichment cultures at pH 10 and 4 M total Na(+) with acetate as electron donor and nitrate, nitrite and N(2)O as electron acceptors resulted in the dominance of Gammaproteobacteria belonging to the genus Halomonas. Both mixed and pure culture studies identified nitrite and N(2)O reduction as rate-limiting steps in the denitrification process at extremely haloalkaline conditions.  相似文献   

5.
Methanogens are of biotechnological interest because of their importance in biogas production. Here we investigate the suitability of sediments from Central Asian soda lakes as inoculum for high pH methane-producing bioreactors. Methane production in these sediments was modest (up to 2.5 μmol mL sediment), with methanol and hydrogen as the preferred substrates. The responsible methanogenic community was characterized based on mcrA gene sequences. McrA gene sequences so far specific to these habitats indicated the presence of two clusters within the orders Methanobacteriales and Methanomicrobiales, one apparently including representatives of the genus Methanocalculus and another distantly related to the genus Methanobacterium.  相似文献   

6.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

7.
The existence of chemolithoautotrophic sulfur-oxidizing bacteria (SOB) capable of growth in an extremely alkaline and saline environment has not been recognized until recently. Extensive studies of saline, alkaline (soda) lakes located in Central Asia, Africa and North America have now revealed the presence, at relatively high numbers, of a new branch of obligately autotrophic SOB in these doubly extreme environments. Overall more than 100 strains were isolated in pure culture. All of them have the potential to grow optimally at around pH 10 in media strongly buffered with sodium carbonate/bicarbonate and cannot grow at pH<7.5 and Na(+) concentration <0.2 M. The majority of the isolates fell into two distinct groups with differing phylogeny and physiology, that have been described as two new genera in the Gammaproteobacteria; Thioalkalimicrobium and Thioalkalivibrio. The third genus, Thioalkalispira, contains a single obligate microaerophilic species T. microaerophila. The Thioalkalimicrobium group represents a typical opportunistic strategy, including highly specialized, relatively fast-growing and low salt-tolerant bacteria, dominating in hyposaline steppe soda lakes of Central Asia. The genus Thioalkalivibrio includes mostly slowly growing species better adapted to life in hypersaline conditions and with a more versatile metabolism. It includes denitrifying, thiocyanate-utilizing and facultatively alkaliphilic species.  相似文献   

8.
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated “intact” sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.  相似文献   

9.
Eight anaerobic enrichment cultures with thiosulfate as electron donor and nitrate as electron acceptor were inoculated with sediment samples from hypersaline alkaline lakes of Wadi Natrun (Egypt) at pH 10; however, only one of the cultures showed stable growth with complete nitrate reduction to dinitrogen gas. The thiosulfate-oxidizing culture subsequently selected after serial dilution developed in two phases. Initially, nitrate was mostly reduced to nitrite, with a coccoid morphotype prevailing in the culture. During the second stage, nitrite was reduced to dinitrogen gas, accompanied by mass development of thin motile rods. Both morphotypes were isolated in pure culture and identified as representatives of the genus Thioalkalivibrio, which includes obligately autotrophic sulfur-oxidizing haloalkaliphilic species. Nitrate-reducing strain ALEN 2 consisted of large nonmotile coccoid cells that accumulated intracellular sulfur. Its anaerobic growth with thiosulfate, sulfide, or polysulfide as electron donor and nitrate as electron acceptor resulted in the formation of nitrite as the major product. The second isolate, strain ALED, was able to grow anaerobically with thiosulfate as electron donor and nitrite or nitrous oxide (but not nitrate) as electron acceptor. Overall, the action of two different sulfur-oxidizing autotrophs resulted in the complete, thiosulfate-dependent denitrification of nitrate under haloalkaliphilic conditions. This process has not yet been demonstrated for any single species of chemolithoautotrophic sulfur-oxidizing haloalkaliphiles.  相似文献   

10.
Laboratory experiments were used to determine the effects of antibiotics, organic C and CaCO3 amendments of sterile reinoculated soil on S0 oxidation by bacteria and fungi. The rate of S0 oxidation in soil with nystatin added was higher than in soil amended with penicillin + streptomycin. This tells us that bacteria were more efficient than fungi in the S0 oxidation process. It was demonstrated that neutrophilic chemolithotrophs were more efficient in this process than heterotrophs. Glucose introduced to the soil had a negative effect and CaCO3 had a positive effect on S0 oxidation. In soil enriched with glucose the number of chemolithotrophs was very low in comparison with extremely numerous heterotrophic bacteria and fungi. It suggests that the role of heterotrophs in S0 oxidation could be important in habitats rich in organic C, e.g. rhizosphere. In soil containing S0, qualitative changes of fungal communities to genera with higher S0 oxidation ability was also noted. In the presented paper, after comparison of the own results with the data of others concerning the natural soils, the role of various microbial groups in S0 oxidation process in soils is discussed.  相似文献   

11.
This paper summarizes recent data on the occurrence and properties of lithotrophic prokaryotes found in extremely alkaline, saline (soda) lakes. Among the chemolithotrophs found in these lakes the obligately autotrophic sulfur-oxidizing bacteria were the dominant, most diverse group, best adapted to haloalkaline conditions. The culturable forms are represented by three new genera, Thioalkalimicrobium, Thioalkalivibrio and Thioalkalispira in the Gammaproteobacteria. Among them, the genus Thioalkalivibrio was most metabolically diverse, including denitrifying, thiocyanate-oxidizing and facultatively alkaliphilic species. Culturable methane-oxidizing populations in the soda lakes belong to the type I methanotroph group in the Gammaproteobacteria, mostly in the genus Methylomicrobium. The nitrifying bacteria in hyposaline soda lakes were represented by a new species Nitrobacter alkalicus (Alphaproteobacteria), and by an alkaliphilic subspecies of Nitrosomonas halophila (Betaproteobacteria). Both belonged to the low salt-tolerant alkaliphiles. The facultatively autotrophic haloalkaliphilic isolates able to grow with hydrogen as electron donor were identified as representatives of the alpha-3 subclass of the Proteobacteria (aerobic) and of the Natronolimnicola - Alkalispirillum group in the gammaproteobacteria (nitrate-reducing). While all chemolithotrophic isolates from soda lakes belong to the alkaliphiles with a pH optimum for growth around 10, only the sulfur-oxidizing group included species able to grow under hypersaline conditions. This indicates that carbon and nitrogen cycles in the hypersaline alkaline lakes might not be closed.  相似文献   

12.
浸矿酸性环境下,金属硫化矿在Fe3+作用下,经过硫代硫酸盐途径或多聚硫化氢途径而分解的过程中导致大量元素硫的累积,进而可能在金属硫化矿表面形成疏水元素硫层,阻碍金属离子的进一步浸出。酸性环境下,惰性元素硫的消解必须借助嗜酸硫氧化细菌来实现。该消解过程包括嗜酸硫氧化细菌对元素硫的吸附、转运以及氧化转化等过程。本文对近年来嗜酸硫氧化细菌消解元素硫过程的相关研究进行了全面评述,认为有关嗜酸硫氧化细菌消解元素硫的分子机制的清晰阐述还有待人们通过对消解过程的各个环节的分子机制进行大量研究来实现。  相似文献   

13.
Blair  Graeme J.  Lefroy  Rod B.  Dana  M.  Anderson  G. C. 《Plant and Soil》1993,(1):379-382
An elemental S oxidation model has been developed which combines a maximum S release rate with modifiers for temperature and soil moisture conditions. This model has been combined with a pasture growth and CNSP nutrient cycling model to match S oxidation rate to pasture S demand. In two Southern Australian enviroments, 100m elemental S was superior to 200m particles whilst in Northern Australia the 200m particles were superior. These models can be used to match S release to plant demand.  相似文献   

14.
硫氧化细菌源单质硫的生成、转运和回收   总被引:1,自引:0,他引:1  
单质硫(硫粒)是硫化物生物氧化的中间产物.按化学计量式精准调控O/S比(溶解氧与硫化物的摩尔比),单质硫可成为硫氧化细菌(Sulfur-oxidizing bacteria,SOB)的主要代谢产物.根据单质硫的分布,单质硫可分为胞内硫粒和胞外硫粒.单质硫由胞内向胞外的跨膜转运过程是泌硫型SOB的重要生理特征.从生物脱硫...  相似文献   

15.
An anaerobic enrichment culture inoculated with a sample of sediments from soda lakes of the Kulunda Steppe with elemental sulfur as electron acceptor and formate as electron donor at pH 10 and moderate salinity inoculated with sediments from soda lakes in Kulunda Steppe (Altai, Russia) resulted in the domination of a Gram-positive, spore-forming bacterium strain AHT28. The isolate is an obligate anaerobe capable of respiratory growth using elemental sulfur, thiosulfate (incomplete reduction) and arsenate as electron acceptor with H?, formate, pyruvate and lactate as electron donor. Growth was possible within a pH range from 9 to 10.5 (optimum at pH 10) and a salt concentration at pH 10 from 0.2 to 2 M total Na+ (optimum at 0.6 M). According to the phylogenetic analysis, strain AHT28 represents a deep independent lineage within the order Bacillales with a maximum of 90 % 16S rRNA gene similarity to its closest cultured representatives. On the basis of its distinct phenotype and phylogeny, the novel haloalkaliphilic anaerobe is suggested as a new genus and species, Desulfuribacillus alkaliarsenatis (type strain AHT28(T) = DSM24608(T) = UNIQEM U855(T)).  相似文献   

16.
17.
An enrichment culture from saline soda soils, using acetate as carbon and energy source and 2-phenylpropionitrile as nitrogen source (PPN) at pH 10, resulted in the isolation of strain ANL-αCH3. The strain was identified as a representative of the genus Halomonas in the Gammaproteobacteria. The bacterium was capable of PPN utilization as a nitrogen source only, while phenylacetonitrile (PAN) served both as carbon, energy and nitrogen source. This capacity was not described previously for any other haloalkaliphilic bacteria. Apart from the nitriles mentioned above, resting cells of ANL-αCH3 also hydrolyzed mandelonitrile, benzonitrile, acrylonitrile, and phenylglycinonitrile, presumably using nitrilase pathway. Neither nitrile hydratase nor amidase activity was detected. The isolate showed a capacity to grow with benzoate and salicylate as carbon and energy source and demonstrated the ability to completely mineralize PAN. These clearly indicated a potential to catabolize aromatic compounds. On the basis of unique phenotype and distinct phylogeny, strain ANL-αCH3 is proposed as a novel species of the genus HalomonasHalomonas nitrilicus sp. nov. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Microbial diversity of soda lakes   总被引:9,自引:3,他引:6  
Soda lakes are highly alkaline extreme environments that form in closed drainage basins exposed to high evaporation rates. Because of the scarcity of Mg2+ and Ca2+ in the water chemistry, the lakes become enriched in CO3 2− and Cl, with pHs in the range 8 to >12. Although there is a clear difference in prokaryotic communities between the hypersaline lakes where NaCl concentrations are >15% w/v and more dilute waters, i.e., NaCl concentrations about 5% w/v, photosynthetic primary production appears to be the basis of all nutrient recycling. In both the aerobic and anaerobic microbial communities the major trophic groups responsible for cycling of carbon and sulfur have in general been identified. Systematic studies have shown that the microbes are alkaliphilic and many represent separate lineages within accepted taxa, while others show no strong relationship to known prokaryotes. Although alkaliphiles are widespread it seems probable that these organisms, especially those unique to the hypersaline lakes, evolved separately within an alkaline environment. Although present-day soda lakes are geologically quite recent, they have probably existed since archaean times, permitting the evolution of independent communities of alkaliphiles since an early period in the Earth's history. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

19.
The activity and cellular localization of carboanhydrase (CA) in two alkaliphilic anaerobes growing in soda lakes at pH 9-10 was studied. CA activity in the cell extracts of the acetogenic bacterium Natroniella acetigena was comparable to that of the neutrophilic acetogens. Hydrogenotrophically grown cells of Desulfonatronum lacustre exhibited higher CA activity compared to the cells grown on media with formate. High CA activity in the cytoplasmic fraction and the absence of high activity in the extracellular fraction were demonstrated. We propose that the cytoplasmic CA in alkaliphilic sulfate-reducers participates in conversion of bicarbonate to CO2, which is reduced in the cell to acetate via the acetyl-CoA pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号