共查询到20条相似文献,搜索用时 0 毫秒
1.
A middle repetitive sequence NPR18 was isolated from Nicotiana plumbaginifolia nuclear genome [8]. Sequences homologous to the repeat are dispersed through genomes of several Nicotiana species. compute-assisted data analysis of NPR18 primary sequence reveals several features attributed to mobile genetic elements: an AT content higher than average for nuclear DNA of genus Nicotiana plants; a number of direct and inverted repeats. Some of the repeats displayed homology to the terminal and subterminal repeats of Ac/Ds-like plant elements. 相似文献
2.
3.
Y. V. Kovtun M. A. Korostash Y. V. Butsko Y. Y. Gleba 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1993,86(2-3):221-228
Summary Asymmetric somatic hybrids were obtained between a chlorophyll-deficient mutant of Nicotiana sylvestris (V42) and a nitrate-reductase (NR)-deficient line of N. plumbaginifolia (cnx20 or Nia26), using each of the parents alternately as the irradiated donor. Irradiation doses applied ranged from 10 to 1,000 Gy of gamma-rays. Hybrid selection was based on complementation of NR deficiency with wild-type NR genes. To aid in the analysis of somatic hybrids, species-specific repetitive DNA sequences from N. plumbaginifolia (NPR9 and NPR18) were cloned. NPR18 is a dispersed repetitive sequence occupying about 0.4% of the N. plumbaginifolia genome. In turn, NPR9, which is part of a highly repetitive DNA sequence, occupies approximately 3% of the genome. The species-specific plant DNA repeats, together with cytological analysis data, were used to assess the relative amount of the N. plumbaginifolia genome in the somatic hybrids. In fusion experiments using irradiated N. plumbaginifolia, an increase in irradiation dose prior to fusion led to a decrease in N. plumbaginifolia nuclear DNA content per hybrid genome. For some hybrid lines, an increase in the quantity of repetitive sequences was detected. Thus, hybrid lines 1NV/21, 100NV/7, 100NV/ 9, and 100NV/10 (where N. plumbaginifolia was the irradiated donor) were characterized by amplification of NPR9. In the reverse combination (where N. sylvestris was the irradiated donor), an increase in the copy number of NPR18 was determined for hybrid clones 1VC/2, 1VC/3, 100VC/2 and oct100/7. Possible reasons for the amplification of the repeated sequences are discussed. 相似文献
4.
《Plant Physiology and Biochemistry》1999,37(11):869-874
A phenylpropanoid compound has been characterized in a Nicotiana plumbaginifolia cell suspension. This compound has been isolated and purified by semi-preparative reverse phase-high performance liquid chromatography. Its structure has been identified by NMR spectroscopy as 5-O-caffeoylquinic acid, which is chlorogenic acid (CA). The influence of culture conditions on the accumulation of this metabolite by N. plumbaginifolia cell suspensions has been studied. Darkness strongly inhibits the CA accumulation. Moreover, it has been shown that feeding experiments with caffeic acid had a deleterious effect upon the CA content. This one was not influenced by a supplementation with quinic acid. 相似文献
5.
Hershey Howard P. Schwartz Linda J. Gale Jennifer P. Abell Lynn M. 《Plant molecular biology》1999,40(5):795-806
Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS. 相似文献
6.
The chromosome idiogram of Nicotiana plumbaginifolia 总被引:1,自引:1,他引:0
A. Villa 《Genetica》1984,64(2):145-148
The karyotype of Nicotiana plumbaginifolia (2n=20) was determined by the analysis of 25 metaphase plates of both haploid and diploid plantlets. The material originated from root tip meristems and leaf protoplasts. Chromosome length ranged from 1.73 to 4.34 m and the total length of the genome was 30.2 m. The following chromosome pairs have been recognized: three metacentrics, two submetacentrics, one subtelocentric, one subtelocentric with satellites and three telocentrics.Contribution no 2036 of the Biology, Radiation protection and Medical Research Programme, Directorate General XII of the Commission of the European Communities. 相似文献
7.
8.
Andrew D. Parry Anne D. Blonstein Maria J. Babiano Patrick J. King Roger Horgan 《Planta》1991,183(2):237-243
A mutant of Nicotiana plumbaginifolia, CKR1, isolated on the basis of its enhanced resistance to cytokinins was found to have a greater tendency to wilt than the wild type (Blonstein et al., 1991, Planta 183, 244–250). Further characterisation has shown that the wiltiness in the mutant is not caused by an insensitivity to abscisic acid (ABA) because the external application of ABA leads to stomatal closure and phenotypic reversion. The basal ABA level in the mutant is < 20% of that in the wild type. Following stress, the ABA level in wild-type leaves increases by approx 9-to 10-fold while the mutant shows only a slight increase. This deficiency in ABA is unlikely to be the consequence of accelerated catabolism as the levels of two major metabolites of ABA, phaseic and dihydrophaseic acid, are also much reduced in the mutant. The qualitative and quantitative distributions of carotenoids, the presumed presursors of ABA, are the same for the leaves of both wild type and mutant. Biosynthesis of ABA at the C15 level was investigated by feeding xanthoxin (Xan) to detached leaves. Wild-type leaves convert between 9–19% of applied Xan to ABA while the mutant converts less than 1%. The basal level of trans-ABA-alcohol (t-ABA-alc) is 3-to 10-fold greater in the mutant and increases by a further 2.5-to 6.0-fold after stress. This indicates that the lesion in the wilty mutant of N. plumbaginifolia affects the conversion of ABA-aldehyde to ABA, as in the flacca and sitiens mutants of tomato and the droopy mutant of potato (Taylor et al., 1988, Plant Cell Environ. 11, 739–745; Duckham et al., 1989, J. Exp. Bot. 217, 901–905). Wild-type tomato and N. plumbaginifolia leaves can convert trans-Xan into t-ABA-alc, and Xan into ABA, while those of flacca and the wilty N. plumbaginifolia mutant convert both Xan and t-Xan to t-ABA-alc. 相似文献
9.
10.
Primary structure of a hormonally regulated beta-glucanase of Nicotiana plumbaginifolia 总被引:15,自引:0,他引:15
M De Loose T Alliotte G Gheysen C Genetello J Gielen P Soetaert M Van Montagu D Inzé 《Gene》1988,70(1):13-23
A cDNA clone for a hormonally regulated beta-glucanase from Nicotiana plumbaginifolia has been isolated by using an oligodeoxynucleotide probe, synthesized to match the previously determined N-terminal amino acid sequence. The cDNA has the complete sequence of the mature protein and contains at least part of a hydrophobic signal peptide. At the amino acid level, the beta-glucanase of N. plumbaginifolia is 73% homologous to a beta(1,3)-glucanase from tobacco and 52% homologous to a beta(1,3;1,4)-glucanase from barley. Southern-blot analysis clearly demonstrated that N. plumbaginifolia contains at least two related genes encoding beta-glucanase. The extent of the complete signal peptide of the cloned beta-glucanase was determined by sequencing part of the corresponding gene. Northern analysis showed that the expression of the beta-glucanase gene is influenced by auxins and cytokinins. 相似文献
11.
The photorespiratory activity of mesophyll protoplasts of Nicotiana plumbaginifolia has been clearly demonstrated by the presence of a Warburg-effect, the occurrence of an important CO2-sensitive O2 uptake and the effect of some photorespiratory inhibitors on photosynthetic activity. At a nonsaturating dissolved inorganic carbon (DIC) concentration (0.1 millimolar), we observed that the rate of CO2 fixation was 60% lower at 50% O2 compared to that measured at 2% O2. Using 18O2 and mass spectrometry, we measured O2 exchange as a function of light intensity and of DIC concentration. Oxygen uptake measured at the CO2 compensation point (47.4 micromoles O2 per hour per milligram chlorophyll) was three-fold higher than that measured at a saturating CO2 concentration. Cyanide or iodoacetamide, inhibitors of the Calvin cycle, were found to reduce the O2 uptake to the same extent as CO2 saturation. We conclude from these results that the major part of the CO2-sensitive O2 uptake is due to photorespiration. Further, we investigated the effect on net photosynthesis of some inhibitors of the glycolate pathway. At CO2 saturation (10 millimolar DIC), 5 millimolar aminoacetonitrile (AAN), and 1 millimolar aminooxyacetate (AOA) did not cause any significant decrease in net photosynthesis. However, when these two inhibitors were added under a period of active photorespiration (10 minutes at the CO2 compensation point at 20% O2), we observed a decrease in the rate of net photosynthesis at 10 millimolar DIC measured afterward (respectively, 18 and 29%). This inhibition did not appear at 2% O2, but was stronger at 50% O2 (40% for AAN and 47% for AOA). With 0.05 millimolar butyl 2-hydroxy-3-butynoate (BHB) or 0.5 millimolar l-methionine-dl-sulfoximine (l-MSO), rates of net photosynthesis at 10 millimolar DIC were decreased by 10 to 15%. Additional decreases were observed after a period at the CO2 compensation point at 20% O2 (30% for BHB and 20% for l-MSO). From the sites of action of the four inhibitors tested, we suggest the inhibition of photosynthesis occurring after a period of active photorespiration to be due to the toxic accumulation of nonmetabolized phosphoglycolate. 相似文献
12.
L. J. W. Gilissen M. J. van Staveren E. Ennik H. A. Verhoeven K. Sree Ramulu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,84(1-2):73-80
Summary Electrofusion was carried out between mesophyll protoplasts from the transformed diploid S. tuberosum clone 413 (2n=2x=24) which contains various genetic markers (hormone autotrophy, opine synthesis, kanamycin resistance, -glucuronidase activity) and mesophyll protoplasts of a diploid wild-type clone of N. plumbaginifolia (2n=2x=20). Hybrid calli were obtained after continuous culture on selection medium containing kanamycin. Parental chromosome numbers, determined at 2 months after fusion, revealed hybrid-specific differences between the individual calli. On the basis of these differences three categories of hybrids were distinguished. Category I hybrids contained between 8 and 24 potato chromosomes and more than 20 N. plumbaginifolia chromosomes; category II hybrids had between 1 and 20 N. plumbaginifolia chromosomes and more than 24 potato chromosomes; category III hybrids contained diploid or subdiploid numbers of chromosomes from both parents. The hybrids were evenly distributed over the three categories. After a 1-year culture of 24 representative hybrid callus lines on selection medium the karyotype of 10 hybrids remained stable, whereas 8 hybrids showed polyploidization of the genome of one parent, together with no or minor changes of the chromosome numbers of the other parent. Six hybrids showed slight changes in the hybrid karyotype. The elimination of chromosomes of a particular parent was not correlated to their metaphase location. The processes of spontaneous biparental chromosome elimination leading to the production of asymmetric hybrids of different categories are discussed. 相似文献
13.
14.
15.
The centromere position on the chromosomes of three European stocks of Nicotiana plumbaginifolia (2n=20) was determined by investigating in root tip mitoses the shape of the chromosomes during congression and polar movement and during C-metaphase. One pair of chromosomes is subtelocentric and 9 pairs are acrocentric. Some chromosomes mimic (sub-)metacentrics by having noncentric constrictions. A recently published (A. Villa; Genetica 64: 145–148, 1984) idiogram of one of the stocks is commented on. 相似文献
16.
17.
In a previous study two haploid streptomycin-resistant clones of Nicotiana plumbaginifolia were isolated. The chromosome number of one of these clones has now been doubled through leaf-midvein culture and the resultant diploids were characterized genetically. Our results show that streptomycin resistance in this clone is conditioned by a recessive nuclear gene. Haploid protoplasts of this streptomycin-resistant mutant were selected for chlorate resistance. All clones obtained from the selection were deficient in nitrate reductase activity in addition to resistance to streptomycin. Genetic analysis of progeny of one of these clones revealed that the genes for streptomycin resistance and for the apoenzyme of nitrate reductase are unlinked. 相似文献
18.
19.
K. -Y. To C. -C. Chen Y. -K. Lai 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(1):81-86
Summary Streptomycin-resistant colonies were isolated from protoplast cultures of haploid Nicotiana plumbaginifolia based on their ability to green in medium containing 1 mg/ml streptomycin sulfate. The frequency of resistant colonies was 0.9×10–5 in nonmutagenized culture, and increased ten-fold following treatment of culture with 10 g/ml N-methyl-N-nitro-N-nitrosoguanidine. Of a total of 52 resistant clones isolated, 2 gave rise to haploid, 15 to diploid, and 3 to tetraploid plants upon transfer of calli to differentiation medium. Leaf-segment and protoplast assays showed that all diploid regenerates were resistant to streptomycin but sensitive to chloramphenicol, kanamycin, lincomycin, neomycin, and spectinomycin. Plants in most diploid clones were fertile and able to set seeds when self-fertilized and crossed reciprocally to wild-type plants. Inheritance of streptomycin resistance was studied in the diploid clones and, without exception, the resistance was transmitted maternally. Comparative studies of the ultrastructure of organelles and protein synthesis in isolated chloroplasts between wild-type and resistant clones in the presence of streptomycin suggest that streptomycin resistance is controlled by chloroplasts. 相似文献
20.
S. E. de Vries M. A. Ferwerda A. E. H. M. Loonen L. P. Pijnacker W. J. Feenstra 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1987,75(1):170-176
Summary Leaf mesophyll protoplasts of the monohaploid potato (Solanum tuberosum L.) clone H7322 were fused with callus protoplasts of nitrate reductase deficient (NR–) mutants Cnx 20 and NA 36 of Nicotiana plumbaginifolia. Somatic hybrid lines were selected for nitrate reductase proficiency. All callus lines tested appeared to be stable for the retention of the potato chromosome carrying the compensating NR gene when grown for over 1.5 years in the absence of nitrate. Shoots were regenerated from six different fusion lines of Cnx 20 + H7322 24 months after fusion. Chromosomal analysis in callus cultures revealed that in both fusion combinations 40–120 N. plumbaginifolia chromosomes were present, as were 9–20 potato chromosomes. Cells with 17 potato chromosomes in combination with a relatively small number (31) of N. plumbaginifolia chromosomes were found in one line. Preferential loss of species-specific chromosomes was not observed. Analysis of regenerating tissue from three lines of Cnx 20 + H7322 revealed that after 24 months of culture intra- and intergeneric translocations, fragments and deletions were present. Elimination of the potato and N. plumbaginifolia chromosomes had taken place before and after genome doubling. 相似文献