首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a two-stage phase I-II clinical trial design to optimize dose-schedule regimes of an experimental agent within ordered disease subgroups in terms of the toxicity-efficacy trade-off. The design is motivated by settings where prior biological information indicates it is certain that efficacy will improve with ordinal subgroup level. We formulate a flexible Bayesian hierarchical model to account for associations among subgroups and regimes, and to characterize ordered subgroup effects. Sequentially adaptive decision-making is complicated by the problem, arising from the motivating application, that efficacy is scored on day 90 and toxicity is evaluated within 30 days from the start of therapy, while the patient accrual rate is fast relative to these outcome evaluation intervals. To deal with this in a practical manner, we take a likelihood-based approach that treats unobserved toxicity and efficacy outcomes as missing values, and use elicited utilities that quantify the efficacy-toxicity trade-off as a decision criterion. Adaptive randomization is used to assign patients to regimes while accounting for subgroups, with randomization probabilities depending on the posterior predictive distributions of utilities. A simulation study is presented to evaluate the design's performance under a variety of scenarios, and to assess its sensitivity to the amount of missing data, the prior, and model misspecification.  相似文献   

2.
Yin G  Li Y  Ji Y 《Biometrics》2006,62(3):777-787
A Bayesian adaptive design is proposed for dose-finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose-response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity-efficacy odds ratio trade-offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.  相似文献   

3.
Thall PF  Inoue LY  Martin TG 《Biometrics》2002,58(3):560-568
We describe an adaptive Bayesian design for a clinical trial of an experimental treatment for patients with hematologic malignancies who initially received an allogeneic bone marrow transplant but subsequently suffered a disease recurrence. Treatment consists of up to two courses of targeted immunotherapy followed by allogeneic donor lymphocyte infusion. The immunotherapy is a necessary precursor to the lymphocyte infusion, but it may cause severe liver toxicity and is certain to cause a low white blood cell count and low platelets. The primary scientific goal is to determine the infusion time that has the highest probability of treatment success, defined as the event that the patient does not suffer severe toxicity and is alive with recovered white blood cell count 50 days from the start of therapy. The method is based on a parametric model accounting for toxicity, time to white blood cell recovery, and survival time. The design includes an algorithm for between-patient immunotherapy dose de-escalation based on the toxicity data and an adaptive randomization among five possible infusion times according to their most recent posterior success probabilities. A simulation study shows that the design reliably selects the best infusion time while randomizing greater proportions of patients to superior infusion times.  相似文献   

4.
In many settings, including oncology, increasing the dose of treatment results in both increased efficacy and toxicity. With the increasing availability of validated biomarkers and prediction models, there is the potential for individualized dosing based on patient specific factors. We consider the setting where there is an existing dataset of patients treated with heterogenous doses and including binary efficacy and toxicity outcomes and patient factors such as clinical features and biomarkers. The goal is to analyze the data to estimate an optimal dose for each (future) patient based on their clinical features and biomarkers. We propose an optimal individualized dose finding rule by maximizing utility functions for individual patients while limiting the rate of toxicity. The utility is defined as a weighted combination of efficacy and toxicity probabilities. This approach maximizes overall efficacy at a prespecified constraint on overall toxicity. We model the binary efficacy and toxicity outcomes using logistic regression with dose, biomarkers and dose–biomarker interactions. To incorporate the large number of potential parameters, we use the LASSO method. We additionally constrain the dose effect to be non-negative for both efficacy and toxicity for all patients. Simulation studies show that the utility approach combined with any of the modeling methods can improve efficacy without increasing toxicity relative to fixed dosing. The proposed methods are illustrated using a dataset of patients with lung cancer treated with radiation therapy.  相似文献   

5.
Summary An outcome‐adaptive Bayesian design is proposed for choosing the optimal dose pair of a chemotherapeutic agent and a biological agent used in combination in a phase I/II clinical trial. Patient outcome is characterized as a vector of two ordinal variables accounting for toxicity and treatment efficacy. A generalization of the Aranda‐Ordaz model (1981, Biometrika 68 , 357–363) is used for the marginal outcome probabilities as functions of a dose pair, and a Gaussian copula is assumed to obtain joint distributions. Numerical utilities of all elementary patient outcomes, allowing the possibility that efficacy is inevaluable due to severe toxicity, are obtained using an elicitation method aimed to establish consensus among the physicians planning the trial. For each successive patient cohort, a dose pair is chosen to maximize the posterior mean utility. The method is illustrated by a trial in bladder cancer, including simulation studies of the method's sensitivity to prior parameters, the numerical utilities, correlation between the outcomes, sample size, cohort size, and starting dose pair.  相似文献   

6.
Summary We propose a Bayesian dose‐finding design that accounts for two important factors, the severity of toxicity and heterogeneity in patients' susceptibility to toxicity. We consider toxicity outcomes with various levels of severity and define appropriate scores for these severity levels. We then use a multinomial‐likelihood function and a Dirichlet prior to model the probabilities of these toxicity scores at each dose, and characterize the overall toxicity using an average toxicity score (ATS) parameter. To address the issue of heterogeneity in patients' susceptibility to toxicity, we categorize patients into different risk groups based on their susceptibility. A Bayesian isotonic transformation is applied to induce an order‐restricted posterior inference on the ATS. We demonstrate the performance of the proposed dose‐finding design using simulations based on a clinical trial in multiple myeloma.  相似文献   

7.
Huang X  Biswas S  Oki Y  Issa JP  Berry DA 《Biometrics》2007,63(2):429-436
The use of multiple drugs in a single clinical trial or as a therapeutic strategy has become common, particularly in the treatment of cancer. Because traditional trials are designed to evaluate one agent at a time, the evaluation of therapies in combination requires specialized trial designs. In place of the traditional separate phase I and II trials, we propose using a parallel phase I/II clinical trial to evaluate simultaneously the safety and efficacy of combination dose levels, and select the optimal combination dose. The trial is started with an initial period of dose escalation, then patients are randomly assigned to admissible dose levels. These dose levels are compared with each other. Bayesian posterior probabilities are used in the randomization to adaptively assign more patients to doses with higher efficacy levels. Combination doses with lower efficacy are temporarily closed and those with intolerable toxicity are eliminated from the trial. The trial is stopped if the posterior probability for safety, efficacy, or futility crosses a prespecified boundary. For illustration, we apply the design to a combination chemotherapy trial for leukemia. We use simulation studies to assess the operating characteristics of the parallel phase I/II trial design, and compare it to a conventional design for a standard phase I and phase II trial. The simulations show that the proposed design saves sample size, has better power, and efficiently assigns more patients to doses with higher efficacy levels.  相似文献   

8.
Dose-finding based on efficacy-toxicity trade-offs   总被引:1,自引:0,他引:1  
Thall PF  Cook JD 《Biometrics》2004,60(3):684-693
We present an adaptive Bayesian method for dose-finding in phase I/II clinical trials based on trade-offs between the probabilities of treatment efficacy and toxicity. The method accommodates either trinary or bivariate binary outcomes, as well as efficacy probabilities that possibly are nonmonotone in dose. Doses are selected for successive patient cohorts based on a set of efficacy-toxicity trade-off contours that partition the two-dimensional outcome probability domain. Priors are established by solving for hyperparameters that optimize the fit of the model to elicited mean outcome probabilities. For trinary outcomes, the new algorithm is compared to the method of Thall and Russell (1998, Biometrics 54, 251-264) by application to a trial of rapid treatment for ischemic stroke. The bivariate binary outcome case is illustrated by a trial of graft-versus-host disease treatment in allogeneic bone marrow transplantation. Computer simulations show that, under a wide rage of dose-outcome scenarios, the new method has high probabilities of making correct decisions and treats most patients at doses with desirable efficacy-toxicity trade-offs.  相似文献   

9.
Thall PF  Simon RM  Shen Y 《Biometrics》2000,56(1):213-219
We propose an approximate Bayesian method for comparing an experimental treatment to a control based on a randomized clinical trial with multivariate patient outcomes. Overall treatment effect is characterized by a vector of parameters corresponding to effects on the individual patient outcomes. We partition the parameter space into four sets where, respectively, the experimental treatment is superior to the control, the control is superior to the experimental, the two treatments are equivalent, and the treatment effects are discordant. We compute posterior probabilities of the parameter sets by treating an estimator of the parameter vector like a random variable in the Bayesian paradigm. The approximation may be used in any setting where a consistent, asymptotically normal estimator of the parameter vector is available. The method is illustrated by application to a breast cancer data set consisting of multiple time-to-event outcomes with covariates and to count data arising from a cross-classification of response, infection, and treatment in an acute leukemia trial.  相似文献   

10.
In dose-finding clinical study, it is common that multiple endpoints are of interest. For instance, efficacy and toxicity endpoints are both primary in clinical trials. In this article, we propose a joint model for correlated efficacy-toxicity outcome constructed with Archimedean Copula, and extend the continual reassessment method (CRM) to a bivariate trial design in which the optimal dose for phase III is based on both efficacy and toxicity. Specially, considering numerous cases that continuous and discrete outcomes are observed in drug study, we will extend our joint model to mixed correlated outcomes. We demonstrate through simulations that our algorithm based on Archimedean Copula model has excellent operating characteristics.  相似文献   

11.
12.
Little RJ  Long Q  Lin X 《Biometrics》2009,65(2):640-649
Summary .  We consider the analysis of clinical trials that involve randomization to an active treatment ( T  = 1) or a control treatment ( T  = 0), when the active treatment is subject to all-or-nothing compliance. We compare three approaches to estimating treatment efficacy in this situation: as-treated analysis, per-protocol analysis, and instrumental variable (IV) estimation, where the treatment effect is estimated using the randomization indicator as an IV. Both model- and method-of-moment based IV estimators are considered. The assumptions underlying these estimators are assessed, standard errors and mean squared errors of the estimates are compared, and design implications of the three methods are examined. Extensions of the methods to include observed covariates are then discussed, emphasizing the role of compliance propensity methods and the contrasting role of covariates in these extensions. Methods are illustrated on data from the Women Take Pride study, an assessment of behavioral treatments for women with heart disease.  相似文献   

13.
Summary This article addresses modeling and inference for ordinal outcomes nested within categorical responses. We propose a mixture of normal distributions for latent variables associated with the ordinal data. This mixture model allows us to fix without loss of generality the cutpoint parameters that link the latent variable with the observed ordinal outcome. Moreover, the mixture model is shown to be more flexible in estimating cell probabilities when compared to the traditional Bayesian ordinal probit regression model with random cutpoint parameters. We extend our model to take into account possible dependence among the outcomes in different categories. We apply the model to a randomized phase III study to compare treatments on the basis of toxicities recorded by type of toxicity and grade within type. The data include the different (categorical) toxicity types exhibited in each patient. Each type of toxicity has an (ordinal) grade associated to it. The dependence among the different types of toxicity exhibited by the same patient is modeled by introducing patient‐specific random effects.  相似文献   

14.
Targeted therapies based on biomarker profiling are becoming a mainstream direction of cancer research and treatment. Depending on the expression of specific prognostic biomarkers, targeted therapies assign different cancer drugs to subgroups of patients even if they are diagnosed with the same type of cancer by traditional means, such as tumor location. For example, Herceptin is only indicated for the subgroup of patients with HER2+ breast cancer, but not other types of breast cancer. However, subgroups like HER2+ breast cancer with effective targeted therapies are rare, and most cancer drugs are still being applied to large patient populations that include many patients who might not respond or benefit. Also, the response to targeted agents in humans is usually unpredictable. To address these issues, we propose subgroup-based adaptive (SUBA), designs that simultaneously search for prognostic subgroups and allocate patients adaptively to the best subgroup-specific treatments throughout the course of the trial. The main features of SUBA include the continuous reclassification of patient subgroups based on a random partition model and the adaptive allocation of patients to the best treatment arm based on posterior predictive probabilities. We compare the SUBA design with three alternative designs including equal randomization, outcome-adaptive randomization, and a design based on a probit regression. In simulation studies, we find that SUBA compares favorably against the alternatives.  相似文献   

15.
Thall PF  Nguyen HQ  Estey EH 《Biometrics》2008,64(4):1126-1136
SUMMARY: A Bayesian sequential dose-finding procedure based on bivariate (efficacy, toxicity) outcomes that accounts for patient covariates and dose-covariate interactions is presented. Historical data are used to obtain an informative prior on covariate main effects, with uninformative priors assumed for all dose effect parameters. Elicited limits on the probabilities of efficacy and toxicity for each of a representative set of covariate vectors are used to construct bounding functions that determine the acceptability of each dose for each patient. Elicited outcome probability pairs that are equally desirable for a reference patient are used to define two different posterior criteria, either of which may be used to select an optimal covariate-specific dose for each patient. Because the dose selection criteria are covariate specific, different patients may receive different doses at the same point in the trial, and the set of eligible patients may change adaptively during the trial. The method is illustrated by a dose-finding trial in acute leukemia, including a simulation study.  相似文献   

16.
Roy J  Daniels MJ 《Biometrics》2008,64(2):538-545
Summary .   In this article we consider the problem of fitting pattern mixture models to longitudinal data when there are many unique dropout times. We propose a marginally specified latent class pattern mixture model. The marginal mean is assumed to follow a generalized linear model, whereas the mean conditional on the latent class and random effects is specified separately. Because the dimension of the parameter vector of interest (the marginal regression coefficients) does not depend on the assumed number of latent classes, we propose to treat the number of latent classes as a random variable. We specify a prior distribution for the number of classes, and calculate (approximate) posterior model probabilities. In order to avoid the complications with implementing a fully Bayesian model, we propose a simple approximation to these posterior probabilities. The ideas are illustrated using data from a longitudinal study of depression in HIV-infected women.  相似文献   

17.
There has been much development in Bayesian adaptive designs in clinical trials. In the Bayesian paradigm, the posterior predictive distribution characterizes the future possible outcomes given the currently observed data. Based on the interim time-to-event data, we develop a new phase II trial design by combining the strength of both Bayesian adaptive randomization and the predictive probability. By comparing the mean survival times between patients assigned to two treatment arms, more patients are assigned to the better treatment on the basis of adaptive randomization. We continuously monitor the trial using the predictive probability for early termination in the case of superiority or futility. We conduct extensive simulation studies to examine the operating characteristics of four designs: the proposed predictive probability adaptive randomization design, the predictive probability equal randomization design, the posterior probability adaptive randomization design, and the group sequential design. Adaptive randomization designs using predictive probability and posterior probability yield a longer overall median survival time than the group sequential design, but at the cost of a slightly larger sample size. The average sample size using the predictive probability method is generally smaller than that of the posterior probability design.  相似文献   

18.
Yin G  Yuan Y 《Biometrics》2009,65(3):866-875
Summary .  Two-agent combination trials have recently attracted enormous attention in oncology research. There are several strong motivations for combining different agents in a treatment: to induce the synergistic treatment effect, to increase the dose intensity with nonoverlapping toxicities, and to target different tumor cell susceptibilities. To accommodate this growing trend in clinical trials, we propose a Bayesian adaptive design for dose finding based on latent 2 × 2 tables. In the search for the maximum tolerated dose combination, we continuously update the posterior estimates for the unknown parameters associated with marginal probabilities and the correlation parameter based on the data from successive patients. By reordering the dose toxicity probabilities in the two-dimensional space, we assign each coming cohort of patients to the most appropriate dose combination. We conduct extensive simulation studies to examine the operating characteristics of the proposed method under various practical scenarios. Finally, we illustrate our dose-finding procedure with a clinical trial of agent combinations at M. D. Anderson Cancer Center.  相似文献   

19.

Objectives

The University of Wisconsin Population Health Institute has published the County Health Rankings since 2010. These rankings use population-based data to highlight health outcomes and the multiple determinants of these outcomes and to encourage in-depth health assessment for all United States counties. A significant methodological limitation, however, is the uncertainty of rank estimates, particularly for small counties. To address this challenge, we explore the use of longitudinal and pooled outcome data in hierarchical Bayesian models to generate county ranks with greater precision.

Methods

In our models we used pooled outcome data for three measure groups: (1) Poor physical and poor mental health days; (2) percent of births with low birth weight and fair or poor health prevalence; and (3) age-specific mortality rates for nine age groups. We used the fixed and random effects components of these models to generate posterior samples of rates for each measure. We also used time-series data in longitudinal random effects models for age-specific mortality. Based on the posterior samples from these models, we estimate ranks and rank quartiles for each measure, as well as the probability of a county ranking in its assigned quartile. Rank quartile probabilities for univariate, joint outcome, and/or longitudinal models were compared to assess improvements in rank precision.

Results

The joint outcome model for poor physical and poor mental health days resulted in improved rank precision, as did the longitudinal model for age-specific mortality rates. Rank precision for low birth weight births and fair/poor health prevalence based on the univariate and joint outcome models were equivalent.

Conclusion

Incorporating longitudinal or pooled outcome data may improve rank certainty, depending on characteristics of the measures selected. For measures with different determinants, joint modeling neither improved nor degraded rank precision. This approach suggests a simple way to use existing information to improve the precision of small-area measures of population health.  相似文献   

20.
Background:  The eradication rate of first-line Helicobacter pylori treatment is only 70–85% and has been decreasing due to the increase in antibiotic resistance. The aim of this study was to evaluate the efficacy of bismuth-containing quadruple therapy as second-line treatment for H. pylori infection based on treatment duration.
Methods:  We prospectively enrolled 227 patients that were found to have persistent H. pylori infection after first-line proton-pump inhibitor-clarithromycin-amoxicillin triple therapy. Patients were randomized to 1-week (112 patients) and 2-week (115 patients) quadruple therapy with tripotassium dicitrate bismuthate 300 mg q.i.d., meteronidazole 500 mg t.i.d., and tetracycline 500 mg q.i.d. and esomeprazole 20 mg b.i.d. The eradication rate, drug compliance, and adverse events were compared based on treatment duration.
Results:  The eradication rates were 72/112 (64.3%, 95% CI: 0.504–0.830) and 71/92 (77.2%, 0.440–0.749) with 1-week group, and 95/115 (82.6%, 1.165–2.449) an 88/94 (93.6%, 1.213–5.113) with 2-week group by intention-to-treat therapy ( p  = .002) and per-protocol analysis ( p  = .001), respectively. The adverse events increased as the treatment durations increased from 7 to 14 days (20.0 and 42.5%, respectively, p  < .001). However, there was no significant difference in the patient compliance or the rate of major adverse events between the 1- and 2-week groups (6.3 and 12.5%, respectively, p  = .133).
Conclusion:  Two-week bismuth-containing quadruple therapy was more effective than the 1-week treatment, and should be considered for second-line treatment in Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号