首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selected regions of the Hm1 muscarinic cholinergic receptor were mutated to analyze the molecular mechanisms of agonist-induced receptor internalization (or sequestration). The wild-type and mutant Hm1 genes were expressed, using pSG5, in U293 human kidney cells. Whereas surface receptor density measured with the polar tracer N-[3H]methylscopolamine was rapidly reduced by carbachol exposure, total receptor content measured with [3H]quinuclidinyl benzilate did not decline for at least 24 h, indicating the absence of extensive receptor down-regulation in U293 cells. Carbachol stimulation of phosphatidylinositol turnover paralleled receptor internalization, both with EC50 values of 10-20 microM. Furthermore, a D71N point mutation that prevented receptor activation also abolished carbachol-induced receptor internalization, indicating that receptor activation (but not necessarily second messenger stimulation) was required for internalization. Truncation of the COOH-terminal tail (K447 trunc) and point mutations of several potential Ser and Thr phosphorylation sites to Ala failed to affect receptor activation and internalization. In contrast, partial deletions of the third intracellular loop (i3) (Tyr208-Thr366) resulted in receptor mutants deficient in agonist-induced receptor internalization/sequestration. Various deletions caused either complete loss of internalization (d 232-358) or impaired internalization, ranging from 10 to 30% over 2 h, whereas wild-type Hm1 internalized to approximately 50%. Whereas the reason for the observed differences among the deficient deletion mutants remains unclear, the initial rate of N-[3H]methylscopolamine binding loss from the cell surface was much slower than that of wild-type Hm1 in each case. The deletion of only one single domain, 284-292 (SMESLTSSE), in the middle of i3 was consistently associated with impaired internalization. Domain 284-292 is partially conserved among closely related muscarinic receptors, whereas most of the remainder of i3 is not (except for the i3 membrane junctions), and similar Ser- and Thr-rich regions are present in many other G protein-coupled receptors. We propose that a small receptor domain in the middle of the i3 loop of Hm1 is involved in agonist-induced receptor internalization.  相似文献   

2.
The m1 muscarinic receptor was previously shown to stimulate phosphatidyl inositol (PI) turnover and to internalize rapidly upon agonist activation. Three receptor mutants with large deletions of the third cytoplasmic loop (i3) of human Hm1, leaving only 11 and 8 amino acids at the amino and carboxy terminal junctions of i3, respectively, retained full ability to stimulate PI turnover, when expressed in U293 cells, but receptor internalization was greatly reduced in two mutants with deletions reaching close to the NH2 terminal of i3. We propose that a receptor domain located toward the amino terminal junction of i3 plays a role in Hm1 internalization.  相似文献   

3.
Somatostatin (SS) is a widely distributed polypeptide that exerts inhibitory effects on hormone secretion and cell proliferation by interacting with five different receptors (SST1-SST5). Beta-arrestins have been implicated in regulating SST internalization, but the structural domains mediating this effect are largely unknown. The aim of this study was to characterize the intracellular mechanisms responsible for internalization of human SST5 in the rat pituitary cell line GH3 and to identify the SST5 structural domains involved in this process. To this purpose we evaluated, by fluorescence microscopy and biochemical assay, the ability of wild-type, progressive C-terminal truncated and third cytoplasmatic loop mutants SST5-DsRed to associate with beta-arrestin-enhanced green fluorescent protein and to internalize under SS28 stimulation. The truncated mutants were comparable to the wild-type receptor with respect to recruitment of beta-arrestin-2 and internalization, whereas the third loop mutants R240W, S242A, and T247A showed the abolishment or reduction of arrestin association and a significant reduction of receptor internalization (14.4%, 29%, and 30.9% vs. 52.4% of wild type) and serine phosphorylation upon SS28 stimulation. Moreover, we evaluated the ability of simultaneous mutation of these three residues (R240, S242, and T247) and C-terminal truncated receptors to internalize. The progressive truncation of the C-terminal tail resulted in a progressive increased internalization (21.6%, 36.7%, and 41%, respectively) with respect to the full-length total third-loop mutant (15%). In conclusion, our results indicate the SST5 third intracellular loop as an important mediator of beta-arrestin/receptor interaction and receptor internalization, whereas they suggest that residues 328-347 within the C terminus may play an inhibitory role in receptor internalization.  相似文献   

4.
The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized. In the present study, agonist-induced internalization of CRFR1 in HEK293 cells was visualized by confocal microscopy and quantified using the radioligand 125I-labelled sauvagine. Recruitment of beta-arrestin 1 in response to receptor activation was demonstrated by confocal microscopy. The extent of 125I-labelled sauvagine stimulated internalization was significantly impaired by sucrose, indicating the involvement of clathrin-coated pits. No effect on the extent of internalization was observed in the presence of the second messenger dependent kinase inhibitors H-89 and staurosporine, indicating that cAMP-dependent protein kinase and protein kinase C are not prerequisites for CRFR1 internalization. Surprisingly, deletion of all putative phosphorylation sites in the C-terminal tail, as well as a cluster of putative phosphorylation sites in the third intracellular loop, did not affect receptor internalization. However, these mutations almost abolished the recruitment of beta-arrestin 1 following receptor activation. In conclusion, we demonstrate that CRFR1 internalization is independent of phosphorylation sites in the C-terminal tail and third intracellular loop, and the degree of beta-arrestin 1 recruitment.  相似文献   

5.
As constitutively active mutants (CAMs) mimic an active conformation, they can be used to characterize the process of G protein-coupled receptor activation. Here, we used CAMs to study the link between activation and internalization of the angiotensin II AT(1A) receptor. The cellular localization of fluorescently tagged N111A, I245T, and L305Q mutants was determined by confocal microscopy. In the absence of ligand, CAMs were mostly located in intracellular vesicles, whereas the wild-type AT(1A) was found at the cell surface. After 2 h incubation with inverse agonist, losartan, CAMs were translocated to the plasma membrane. Similar observations were made in H295, a human adrenocortical cell line which expresses physiologically the AT(1) receptor. This phenomenon, which was not dependent on protein synthesis and the pharmacology and kinetics of which were similar to the recycling of the wild-type receptor, was called "externalization". After externalization and losartan removal, the L305Q CAM underwent rapid ligand-independent endocytosis, with the same kinetics and temperature sensitivity as the angiotensin II-induced internalization of the wild-type AT(1A). Moreover, the addition of a second mutation known to block internalization (Delta 329 truncation) prevented intracellular localization of the CAM. These data show that AT(1A) CAMs are constitutively and permanently internalized and recycled. This mechanism is different from the down-regulation observed for CAMs of other G protein-coupled receptors and thus defines a new paradigm for the cellular regulation of CAMs.  相似文献   

6.
Activated human neuropeptide Y Y(1) receptors rapidly desensitize and internalize through clathrin-coated pits and recycle from early and recycling endosomes, unlike Y(2) receptors that neither internalize nor desensitize. To identify motifs implicated in Y(1) receptor desensitization and trafficking, mutants with varying C-terminal truncations or a substituted Y(2) C-terminus were constructed. Point mutations of key putative residues were made in a C-terminal conserved motif [phi-H-(S/T)-(E/D)-V-(S/T)-X-T] that we have identified and in the second intracellular i2 loop. Receptors were analyzed by functional assays, spectrofluorimetric measurements on living cells, flow cytometry, confocal imaging and bioluminescence resonance energy transfer assays for beta-arrestin activation and adaptor protein (AP-2) complex recruitment. Inhibitory GTP-binding protein-dependent signaling of Y(1) receptors to adenylyl cyclase and desensitization was unaffected by C-terminal truncations or mutations, while C-terminal deletion mutants of 42 and 61 amino acids no longer internalized. Substitutions of Thr357, Asp358, Ser360 and Thr362 by Ala in the C-terminus abolished both internalization and beta-arrestin activation but not desensitization. A Pro145 substitution by His in an i2 consensus motif reported to mediate phosphorylation-independent recruitment of beta-arrestins affected neither desensitization, internalization or recycling kinetics of activated Y(1) receptors nor beta-arrestin activation. Interestingly, combining Pro145 substitution by His and C-terminal substitutions significantly attenuates Y(1) desensitization. In the Y(2) receptor, replacement of His155 with Pro at this position in the i2 loop motif promotes agonist-mediated desensitization, beta-arrestin activation, internalization and recycling. Overall, our results indicate that beta-arrestin-mediated desensitization and internalization of Y(1) and Y(2) receptors are differentially regulated by the C-terminal motif and the i2 loop consensus motif.  相似文献   

7.
The alpha-factor pheromone receptor (STE2) activates a G protein signal pathway that induces conjugation of the yeast Saccharomyces cerevisiae. Previous studies implicated the third intracellular loop of this receptor in G protein activation. Therefore, the roles of transmembrane domains five and six (TMD5 and -6) that bracket the third intracellular loop were analyzed by scanning mutagenesis in which each residue was substituted with cysteine. Out of 42 mutants examined, four constitutive mutants and two strong loss-of-function mutants were identified. Double mutants combining Cys substitutions in TMD5 and TMD6 gave a broader range of phenotypes. Interestingly, a V223C mutation in TMD5 caused constitutive activity when combined with the L247C, L248C, or S251C mutations in TMD6. Also, the L226C mutation in TMD5 caused constitutive activity when combined with either the M250C or S251C mutations in TMD6. The residues affected by these mutations are predicted to fall on one side of their respective helices, suggesting that they may interact. In support of this, cysteines substituted at position 223 in TMD5 and position 247 in TMD6 formed a disulfide bond, providing the first direct evidence of an interaction between these transmembrane domains in the alpha-factor receptor. Altogether, these results identify an important region of interaction between conserved hydrophobic regions at the base of TMD5 and TMD6 that is required for the proper regulation of receptor signaling.  相似文献   

8.
R A Shapiro  N M Nathanson 《Biochemistry》1989,28(22):8946-8950
Deletions have been constructed in the putative third cytoplasmic loop of the mouse m1 muscarinic acetylcholine receptor (mAChR) gene, and the effects of these mutations on mAChR coupling to phosphoinositide metabolism and agonist-induced down-regulation have been examined following expression in Y1 adrenal carcinoma cells. Deletion of up to 123 of the 156 amino acids in this loop has no effect on antagonist or agonist binding, or on coupling to stimulation of phosphoinositide metabolism. These results suggest that the membrane proximal portions of this loop are involved in determining the specificity of functional coupling of the receptor. Deletion of 75% of the loop has no effect on short-term agonist-induced internalization but does cause a significant decrease in the magnitude of agonist-induced down-regulation of receptor number. Thus, this portion of the receptor may be involved in mediating the response to long-term agonist exposure.  相似文献   

9.
Using chimeras and more discrete exchange mutations of the rat (r) and human (h) gonadotropin receptors, we had previously identified multiple noncontiguous residues of the lutropin (LHR) and follitropin (FSHR) receptors that dictate their rates of internalization. Since the internalization of the LHR and the FSHR is driven by their abilities to associate with the nonvisual arrestins, we hypothesized that one or more of the residues previously identified by the internalization assays are involved in the formation of the receptor/nonvisual arrestin complex. In the studies reported herein, we tested this hypothesis by measuring the association of arrestin-3 with a large number of rLHR/hLHR and rFSHR/hFSHR exchange mutants that affect internalization. The results presented show that the same residues that dictate the rate of internalization of these two receptor pairs affect their ability to associate with arrestin-3. Although these residues are located in distinct topological domains, our analyses show that threonine residues in the third intracellular loop of both receptor pairs are particularly important for the formation of the receptor/arrestin-3 complexes and internalization. We conclude that the different rates of internalization of the gonadotropin receptors are dictated by their different abilities to associate with the nonvisual arrestins and that this association is, in turn, largely dictated by the presence of threonine residues in their third intracellular loops.  相似文献   

10.
We measured dose-response curves for carbachol stimulation of phosphatidyl inositol (PI) turnover with mutants of the Hm1 muscarinic cholinergic receptor having various deletions from amino acids 219 to 358 of the large third intracellular (i3) loop (208 to 366). These deletions had only small or no effects on the ability of Hm1 transfected into HEK 293 cells to stimulate PI turnover. This result indicates that only small regions of 9 to 11 amino acids adjacent to trans-membrane domains (TMDs) 5 and 6 can be directly involved in G protein coupling. Point mutations were constructed to test the role of charged amino acids in these junctions. A triple point mutation of Hm1 (E214 A/ E216K/ E221 K), which mimics the charge distribution in Hm2 (negatively coupled to cAMP) over the first 14 amino acids of i3, and a double point mutation in the N terminal junction, K359A/K361A, both failed to affect carbachol stimulated PI turnover. Therefore, charge distribution in the loop junctions appears to play a minor role in G protein coupling of Hm1 in HEK 293 cells.  相似文献   

11.
Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.  相似文献   

12.
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.  相似文献   

13.
It has previously been shown that the GLP-1 receptor is primarily coupled to the adenylate cyclase pathway via activation of Galpha(s) proteins. Recent studies have shown that the third intracellular loop of the receptor is important in the stimulation of cAMP production. We have studied the effect of three synthetic peptide sequences derived from the third intracellular loop of the GLP-1 receptor on signal transduction in Rin m5F cell membranes. The whole third intracellular loop strongly stimulates both pertussis toxin and cholera toxin-sensitive G proteins, while the N-terminal half exclusively stimulates cholera toxin-sensitive G proteins and the C-terminal half only stimulates pertussis toxin-sensitive G-proteins as demonstrated by measurements of GTPase activity. These data confirm that the principal stimulatory G-protein interaction site resides in the third intracellular loop, but also suggest that the GLP-1 receptor is not only coupled to the Galpha(s) but also to the Galpha(i)/Galpha(o) type of G proteins and that distinct domains within the third intracellular loop are responsible for the activation of the different G-protein subfamilies.  相似文献   

14.
CXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation. To determine the structural determinant(s) that modulate receptor internalization, various chimeric and point mutant receptors were generated by progressively exchanging specific domains or amino acids between CXCR1 and CXCR2. The receptors were stably expressed in rat basophilic leukemia 2H3 cells and characterized for receptor binding, intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, phosphorylation, internalization, and MAPK activation. The data herein indicate that the second extracellular loop (2ECL) of the receptors is critical for the distinct rate of internalization. Replacing the 2ECL of CXCR2 with that of CXCR1 (B(2ECL)A) or Asp(199) with its CXCR1 valine counterpart (B(D199V)A) delayed CXCR2 internalization similarly to CXCR1. Replacing Asp(199) with Asn (B(D199N)) restored CXCR2 rapid internalization. Structure modeling of the 2ECL of the receptors also suggested that Asp(199) plays a critical role in stabilizing and modulating CXCR2 rapid internalization relative to CXCR1. B(D199N) internalized rapidly but migrated as a single phosphorylated form like CXCR1 ( approximately 75 kDa), whereas B(2ECL)A and B(D199V)A showed slow and fast migrating forms like CXCR2 ( approximately 45 and approximately 65 kDa, respectively) but internalized like CXCR1. These data further undermine the role of receptor oligomerization in CXCL8 receptor internalization. Like CXCR1, B(D199V)A also induced sustained ERK activation and cross-desensitized Ca(2+) mobilization to CCR5 relative to B(D199N) and CXCR2. Altogether, the data suggest that the 2ECL of the CXCL8 receptors is important in modulating their distinct rate of down-regulation and thereby signal length and post-internalization activities.  相似文献   

15.
To identify functional domains of G-protein-coupled receptors that control pathway activation, ligand discrimination, and receptor regulation, we have used as a model the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. From a collection of random mutations introduced in the region coding for the third cytoplasmic loop of Ste2p, six ste2sst alleles were identified by genetic screening methods that increased alpha-factor sensitivity 2.5- to 15-fold. The phenotypic effects of ste2sst and sst2 mutations were not additive, consistent with models in which the third cytoplasmic loop of the alpha-factor receptor and the regulatory protein Sst2p control related aspects of pheromone response and/or desensitization. Four ste2sst mutations did not dramatically alter cell surface expression or agonist binding affinity of the receptor; however, they did permit detectable responses to an alpha-factor antagonist. One ste2sst allele increased receptor binding affinity for alpha-factor and elicited stronger responses to antagonist. Results of competition binding experiments indicated that wild-type and representative mutant receptors bound antagonist with similar affinities. The antagonist-responsive phenotypes caused by ste2sst alleles were therefore due to defects in the ability of receptors to discriminate between agonist and antagonist peptides. One ste2sst mutation caused rapid, ligand-independent internalization of the receptor. These results demonstrate that the third cytoplasmic loop of the alpha-factor receptor is a multifunctional regulatory domain that controls pathway activation and/or desensitization and influences the processes of receptor activation, ligand discrimination, and internalization.  相似文献   

16.
IL-8 (or CXCL8) activates the receptors CXCR1 (IL-8RA) and CXCR2 (IL-8RB) to induce chemotaxis in leukocytes, but only CXCR1 mediates cytotoxic and cross-regulatory signals. This may be due to the rapid internalization of CXCR2. To investigate the roles of the intracellular domains in receptor regulation, wild-type, chimeric, phosphorylation-deficient, and cytoplasmic tail (C-tail) deletion mutants of both receptors were expressed in RBL-2H3 cells and studied for cellular activation, receptor phosphorylation, desensitization, and internalization. All but one chimeric receptor bound IL-8 and mediated signal transduction, chemotaxis, and exocytosis. Upon IL-8 activation, the chimeric receptors underwent receptor phosphorylation and desensitization. One was resistant to internalization, yet it mediated normal levels of beta-arrestin 2 (beta arr-2) translocation. The lack of internalization by this receptor may be due to its reduced association with beta arr-2 and the adaptor protein-2 beta. The C-tail-deleted and phosphorylation-deficient receptors were resistant to receptor phosphorylation, desensitization, arrestin translocation, and internalization. They also mediated greater phosphoinositide hydrolysis and exocytosis and sustained Ca(2+) mobilization, but diminished chemotaxis. These data indicate that phosphorylation of the C-tails of CXCR1 and CXCR2 are required for arrestin translocation and internalization, but are not sufficient to explain the rapid internalization of CXCR2 relative to CXCR1. The data also show that receptor internalization is not required for chemotaxis. The lack of receptor phosphorylation was correlated with greater signal transduction but diminished chemotaxis, indicating that second messenger production, not receptor internalization, negatively regulates chemotaxis.  相似文献   

17.
Wild-type and 35 mutant formyl peptide receptors (FPRs) were stably expressed in Chinese hamster ovary cells. All cell surface-expressed mutant receptors bound N-formyl peptide with similar affinities as wild-type FPR, suggesting that the mutations did not affect the ligand-binding site. G protein coupling was examined by quantitative analysis of N-formyl-methionyl-leucyl-phenylalanine-induced increase in binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) to membranes. The most prominent uncoupled FPR mutants were located in the N-terminal part of the second transmembrane domain (S63W and D71A) and the C-terminal interface of the third transmembrane domain (R123A and C124S/C126S). In addition, less pronounced uncoupling was detected with deletion mutations in the third cytoplasmic loop and in the cytoplasmic tail. Further analysis of some of the mutants that were judged to be uncoupled based on the [(35)S]GTPgammaS membrane-binding assay were found to transduce a signal, as evidenced by intracellular calcium mobilization and activation of p42/44 MAPK. Thus, these single point mutations in FPR did not completely abolish the interaction with G protein, emphasizing that the coupling site is coordinated by several different regions of the receptor. Mutations located in the putative fifth and sixth transmembrane domains near the N- and C-terminal parts of the third cytoplasmic loop did not result in uncoupling. These regions have previously been shown to be critical for G protein coupling to many other G protein-coupled receptors. Thus, FPR appears to have a G protein-interacting site distinct from the adrenergic receptors, the muscarinic receptors, and the angiotensin receptors.  相似文献   

18.
G protein-coupled receptors identified so far are classified into at least three major families based on their amino acid sequences. For the family of receptors homologous to rhodopsin (family 1), the G protein activation mechanism has been investigated in detail, but much less for the receptors of other families. To functionally compare the G protein activation mechanism between rhodopsin and metabotropic glutamate receptor (mGluR), which belong to distinct families, we prepared a set of bovine rhodopsin mutants whose second or third cytoplasmic loop was replaced with either the second or third loop of Gi/Go- or Gq-coupled mGluR (mGluR6 or mGluR1). Among these mutants, the mutants in which the second or third loop was replaced with the corresponding loop of mGluR exhibited no G protein activation ability. In contrast, the mutant whose third loop was replaced with the second loop of Gi/Go-coupled mGluR6 efficiently activated Gi but not Gt: this activation profile is almost identical with those of the mutant rhodopsins whose third loop was replaced with those of the Gi/Go-coupled receptors in family 1 [Yamashita et al. (2000) J. Biol. Chem. 275, 34272-34279]. The mutant whose third loop was replaced with the second loop of Gq-coupled mGluR1 partially retained the Gi coupling ability of rhodopsin, which is in contrast to the fact that all the rhodopsin mutants having the third loops of Gq-coupled receptors in family 1 exhibit no detectable Gi activation. These results strongly suggest that the molecular architectures of rhodopsin and mGluR are different, although the G protein activation mechanism involving the cytoplasmic loops is common.  相似文献   

19.
The molecular mechanism of constitutive activity of the G protein-coupled receptor for human parathyroid hormone (PTH1) has been examined by molecular dynamics (MD) simulations. The single point mutations H223R, T410P, and I458R, of the PTH1 receptor result in ligand-independent receptor activation. Extensive MD simulations indicate that each of the mutations, through different mechanisms, lead to very similar conformational changes of the third intracellular loop. The structural changes, centered on K405 in the C-terminus of the third intracellular loop, can be traced back to the single-point mutations by calculation of the forces and torques responsible for the collective motions of the receptor. This analysis indicates a direct correlation between the conformational preferences of the cytoplasmic loop and the mutations in different locations of the receptor: TM2 (H223R), TM6 (T410P), and TM7 (1458R). Given the pivotal role of the third intracellular loop of PTH1 in coupling to the G proteins, the structural changes induced by these single-point mutations may be responsible for the ligand-free activation of the receptor. These results coupled with the high-resolution structure of the third cytoplasmic loop of PTH1, previously determined in our laboratory, provide unique insight into the mechanism of ligand free activation of the PTH1 receptor.  相似文献   

20.
Two independent gain-of-function point mutations (S252W and P253R) in the extracellular region of the FGFR2 (fibroblast growth factor receptor 2) increase the binding affinity for the growth factor. The effect of this enhanced growth factor binding by these mutants is expected to be an increase in activation of regular signalling pathways from FGFR2 as a result of more receptors being engaged by ligand at any given time. Using PC12 (pheochromocytoma) cells as a model cell system we investigated the effect of these mutations on protein phosphorylation including the receptor, the activation of downstream signalling pathways and cell differentiation. Our results show that the effects of both of these extracellular mutations have unexpected intracellular phenotypes and cellular responses. Receptor phosphorylation was altered in both the ligand-stimulated and unstimulated states. The mutants also resulted in differential phosphorylation of a number of intracellular proteins. Both mutations resulted in enhanced ERK1/2 (extracellular-signalregulated kinase1/2) activation. Although ERK1/2 activation is believed to transduce signals resulting in cell differentiation, this response was abrogated in the cells expressing the mutant receptors. The results of the present study demonstrate that single extracellular point mutations in the FGFR2 have a profound effect on intracellular signalling and ultimately on cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号