首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

2.
The opening of excised Samanea saman pulvini is promoted by prolonged blue or far-red irradiation. Far-red effects are attributed partially but not completely to lowering of the Pfr level. Two hours of continuous or pulsed blue light or pulsed far-red light (total dosage = 2.2 × 1018 quanta per square centimeter in all cases) also phase shifts the rhythm in Samanea while two hours of continuous blue light phase shifts the rhythm in the related plant Albizzia julibrissin. The same pigments appear to regulate opening and rhythmic phase shifting. The blue light-induced phase response curve has smaller advance and delay peaks and differs in shape from the curve induced by brief red light pulses absorbed by phytochrome. The blue absorbing pigment has not been identified, but it does not appear to be phytochrome acting in a photoreversible mode.  相似文献   

3.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

4.
A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.  相似文献   

5.
Circadian pacemakers respond to light pulses with phase adjustments that allow for daily synchronization to 24-h light-dark cycles. In Syrian hamsters, Mesocricetus auratus, light-induced phase shifts are larger after entrainment to short daylengths (e.g., 10 h light:14 h dark) vs. long daylengths (e.g., 14 h light:10 h dark). The present study assessed whether photoperiodic modulation of phase resetting magnitude extends to nonphotic perturbations of the circadian rhythm and, if so, whether the relationship parallels that of photic responses. Male Syrian hamsters, entrained for 31 days to either short or long daylengths, were transferred to novel wheel running cages for 2 h at times spanning the entire circadian cycle. Phase shifts induced by this stimulus varied with the circadian time of exposure, but the amplitude of the resulting phase response curve was not markedly influenced by photoperiod. Previously reported photoperiodic effects on photic phase resetting were verified under the current paradigm using 15-min light pulses. Photoperiodic modulation of phase resetting magnitude is input specific and may reflect alterations in the transmission of photic stimuli.  相似文献   

6.
Steady-state analysis is performed on the kinetic model for the switch complex of the flagellar motor of Halobacterium salinarum (Nutsch et al. [16]). The existence and uniqueness of a positive steady-state of the system is established and it is demonstrated why the steady-state is centered around the competent phase, a state of the motor in which it is able to respond to light stimuli. It is also demonstrated why the steady-state shifts to the refractory phase when the steady-state value of the response regulator CheYP increases. This work is one aspect of modeling in systems biology wherein the mathematical properties of a model are established.  相似文献   

7.
Abstract

The mammalian circadian pacemaker can be phase shifted by photic, pharmacological, and behaviorally‐derived stimuli. The phase‐response curves (PRCs) characterizing these diverse stimuli may comprise two distinct families; a photic PRC typified by the response to brief light pulses, and a non‐photic PRC, typified by the response to dark pulses and to behavioral activation. The present study examined the phase shifting effects of acute systemic treatment with the alpha2‐adrenoceptor agonist, clonidine, in Syrian hamsters. Clonidine injections (0.25 mg/kg, ip) delivered during subjective night mimicked the phase shifting effects of light pulses in animals housed in both constant darkness (DD) and constant red light (RR), but similar effects were not seen in saline‐treated controls. Both clonidine and saline injections resulted in phase advances during subjective day, but only in RR‐housed animals. Clonidine‐induced phase shifting was dose‐dependent, but rather high doses were required to induce phase shifts. Pretreatment with the selective noradrenergic neurotoxin, DSP‐4, blocked clonidine‐induced phase shifting. These results suggest that clonidine acts at presynaptic alpha2‐adrenergic autoreceptors to disinhibit spontaneous and/or evoked activity in the photic entrainment pathway.  相似文献   

8.
Phase shifting of circadian systems by light has been attributed both to parametric effects on angular velocity elicited by a tonic response to the luminance level and to nonparametric instantaneous shifts induced by a phasic response to the dark-light (D>L) and light-dark (L>D) transitions. Claims of nonparametric responses are partly based on "step-PRCs," that is, phase response curves derived from such transitions. Step-PRCs in nocturnal mammals show mostly delays after lights-on and advances after lights-off, and therefore appear incompatible with phase delays generated by light around dusk and advances by light around dawn. We have pursued this paradox with 2 experimental protocols in mice. We first use the classic step-PRC protocol on wheel running activity, using the center of gravity as a phase marker to minimize the masking effects of light. The experiment was done for 3 different light intensities (1, 10, and 100 lux). D>L transitions evoke mostly delays and L>D transitions show no clear tendency to either delay or advance. Overall there is little or no circadian modulation. A 2nd protocol aimed to avoid the problem of masking by assessing phase before and after the light stimuli, both in DD. Light stimuli consisted of either a slow light intensity increase over 48 h followed by abruptly switching off the light, or an abrupt switch on followed by a slow decrease toward total darkness during 48 h. If the abrupt transitions were responsible for phase shifting, we expected large differences between the 2 stimuli. Both light stimuli yielded similar PRCs characterized by delays only with circadian modulation. The results can be adequately explained by a model in which all PRCs evoked by steps result in fact from tonic responses to the light following a step-up or preceding a step-down. In this model only the response reduction of tonic velocity change after the 1st hour is taken into account. The data obtained in both experiments are thus compatible with tonic velocity responses. Contrary to standard interpretation of step-PRCs, nonparametric responses to the transitions are unlikely since they would predict delays in response to lights-off, advances in response to lights-on, while the opposite was found. Although such responses cannot be fully excluded, parsimony does not require invocation of a role for transitions, since all the data can readily be explained by tonic velocity (parametric) effects, which must exist because of the dependence of tau on light intensity.  相似文献   

9.
Ocular light exposure patterns are the primary stimuli for entraining the human circadian system to the local 24-h day. Many totally blind persons cannot use these stimuli and, therefore, have circadian rhythms that are not entrained. However, a few otherwise totally blind persons retain the ability to suppress plasma melatonin concentrations after ocular light exposure, probably using a neural pathway that includes the site of the human circadian pacemaker, suggesting that light information is reaching this site. To test definitively whether ocular light exposure could affect the circadian pacemaker of some blind persons and whether melatonin suppression in response to bright light correlates with light-induced phase shifts of thecircadian system, the authorsperformed experiments with 5 totally blind volunteers using a protocol known to induce phase shifts of the circadian pacemaker in sighted individuals. In the 2 blind individuals who maintained light-induced melatonin suppression, the circadian system was shifted by appropriately timed bright-light stimuli. These data demonstrate that light can affect the circadian pacemaker of some totally blind individuals--either by altering the phase of the circadian pacemaker or by affecting its amplitude. They are consistent with data from animal studies demonstrating that there are different neural pathways and retinal cells that relay photic information to the brain: one for conscious light perception and the other for non-image-forming functions.  相似文献   

10.
Additivity in the circadian phototransduction system of the mouse has not been tested directly. Because of this, accurate prediction of circadian phase shifts elicited by polychromatic light stimuli cannot be derived from the results of studies using monochromatic light stimuli. This limitation also makes it impossible to deduce the relative contributions of the photoreceptive mechanisms (rods, cones and melanopsin-containing retinal ganglion cells) underlying circadian phototransduction in the mouse. Using nearly monochromatic light stimuli of different spectral composition, and combinations thereof, we demonstrated that murine circadian phototransduction exhibits additivity. Based on the locomotor activity phase shifts elicited by these stimuli, we developed the first quantitative assessment of the relative contributions of conventional and novel photoreceptive mechanisms for circadian functioning in the mouse.  相似文献   

11.
Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.  相似文献   

12.
Circadian clocks with characteristic period (τ) can be entrained to light/dark (LD) cycles by means of (i) phase shifts which are due to D/L “dawn” and/or L/D “dusk” transitions, (ii) period changes associated with long-term light exposure, or (iii) by combinations of the above possibilities. Based on stability analysis of a model circadian clock it was predicted that nocturnal burrowing mammals would benefit less from period responses than their diurnal counterparts. The model further predicted that maximal stability of circadian clock is reached when the clock slightly changes both its phase and period in response to light stimuli. Analyses of empirical phase response curve (PRC) and period response curve (τRC) of some diurnal and nocturnal mammals revealed that PRCs of both diurnal and nocturnal mammals have similar waveform while τRCs of nocturnal mammals are of smaller amplitude than those of diurnal mammals. The shape of the τRC also changes with age and with increasing strength of light stimuli. During erratic fluctuations in light intensity under different weather conditions, the stability of phase of entrainment of circadian clocks appears to be achieved by an interplay between phase and period responses and the strength of light stimuli.  相似文献   

13.
The action spectrum for resetting the phase of the circadian clock in Chlamydomonas reinhardtii is different depending upon whether the light stimuli are presented to cells that were in darkness versus dim illumination before stimulation. In this report, we show that phase resetting of illuminated cells appears to be mediated by components of the photosynthetic apparatus. This conclusion is based upon the action spectrum for phase-shifting illuminated cells (which looks like that for photosynthesis) and upon the fact that inhibitors of photosynthetic electron transport also inhibit the light-induced phase shift of illuminated cells. Both of these characteristics differ from that of cells taken from darkness. We, therefore, believe that at least two resetting pathways for this circadian clock exist and that both of these pathways are ecologically significant.  相似文献   

14.
This paper concerns methodological limitations in research on nonphotic resetting of circadian rhythms. There are problems in producing phase responses curves for arousing activity-inducing stimuli when locomotor activity is also used as a phase marker. It is also difficult to define the nature of these nonphotic inputs. Dose-response curves relating amount of wheel running to phase shifts have been overinterpreted, and the measurement of phase shifts is complicated by concomitant changes in period. Some of these points also apply sometimes to chronobiological experiments with light.  相似文献   

15.
This paper concerns methodological limitations in research on nonphotic resetting of circadian rhythms. There are problems in producing phase responses curves for arousing activity-inducing stimuli when locomotor activity is also used as a phase marker. It is also difficult to define the nature of these nonphotic inputs. Dose-response curves relating amount of wheel running to phase shifts have been overinterpreted, and the measurement of phase shifts is complicated by concomitant changes in period. Some of these points also apply sometimes to chronobiological experiments with light.  相似文献   

16.
The induction of phase shifts in the rhythm of CO2 output inleaves of Bryophyllum fedtschenkoi kept in continuous darknessand a CO2-free air stream at 15 °C has been investigatedby scanning the circadian cycle with 1-h and 3-h exposures tolow fluence rates of red light. The experiments were designedto test the hypothesis (Wilkins, 1983) that phase-shift inductionwas achieved by the redistribution of malate between the vacuolarand cytoplasmic compartments of the leaf cells due to red lightopening ‘gates’ in the tonoplast through which malatediffusion can take place. The use of red light exposures oftwo different durations enabled the direction of phase shiftsto be established. From 8 h to about 22 h of darkness, whenthe cytoplasm would be expected to have a higher level of malatethan the vacuole, only phase advances were observed, as predictedfrom the hypothesis. At later times in the cycle, phase delaysand then phase advances were induced in a pattern closely similarto that reported for high temperature treatments (Wilkins, 1983).The results are discussed in relation to the tonoplast gatehypothesis which appears to account adequately for every featureof the phase shifts induced by exposing leaves to red light. Key words: Bryophyllum fedtschenkoi, Circadian rhythm, CO2 fixation, phase control, red light, malate transport  相似文献   

17.
Diurnal animals occupy a different temporal niche from nocturnal animals and are consequently exposed to different amounts of light as well as different dangers. Accordingly, some variation exists in the way that diurnal animals synchronize their internal circadian clock to match the external 24-hour daily cycle. First, though the brain mechanisms underlying photic entrainment are very similar among species with different daily activity patterns, there is evidence that diurnal animals are less sensitive to photic stimuli compared to nocturnal animals. Second, stimuli other than light that synchronize rhythms (i.e. nonphotic stimuli) can also entrain and phase shift daily rhythms. Some of the rules that govern nonphotic entrainment in nocturnal animals as well as the brain mechanisms that control nonphotic influences on rhythms do not appear to apply to diurnal animals, however. Some evidence supports the idea that arousal or activity plays an important role in entraining rhythms in diurnal animals, either during the light (active) or dark (inactive) phases, though no consistent pattern is seen. GABAergic stimulation induces phase shifts during the subjective day in both diurnal and nocturnal animals. In diurnal Arvicanthis niloticus (Nile grass rats), SCN GABAA receptor activation at this time results in phase delays while in nocturnal animals phase advances are induced. It appears that the effect of GABA at this circadian phase results from the inhibition of period gene expression in both diurnal and nocturnal animals. Nonetheless, the resulting phase shifts are in opposite directions. It is not known what stimuli or behaviours ultimately induce changes in GABA activity in the SCN that result in alterations of circadian phase in diurnal grass rats. Taken together, studies such as these suggest that it may be problematic to apply the principles governing nocturnal nonphotic entrainment and its underlying mechanisms to diurnal species including humans.  相似文献   

18.
Summary The eye of the marine mollusk Aplysia californica contains a photo-entrainable circadian pacemaker that drives an overt circadian rhythm of spontaneous compound action potentials in the optic nerve. Both light and serotonin are known to influence the phase of this ocular rhythm. The current study evaluated the effect of FMRFamide on both light and serotonin induced phase shifts of this rhythm. The application of FMRFamide was found to block serotonin induced phase shifts but, by itself, FMRFamide did not cause significant phase shifts. Furthermore, the effects of FMRFamide on light-induced phase shifts appeared to be phase dependent (i.e., the application of FMRFamide inhibited light-induced phase delays but actually enhanced the magnitude of phase advances). As in Aplysia, the eye of Bulla gouldiana also contains a circadian pacemaker. In Bulla, FMRFamide prevented light-induced phase advances and delays. Although FMRFamide alone generated phase dependent phase shifts, it did not cause phase shifts at the phases where it blocked the effects of light. These data demonstrate that FMRFamide can have pronounced modulatory effects on phase shifting inputs to the ocular pacemakers of both Aplysia and Bulla.Abbreviations ASW artificial seawater - CAP compound action potential - CT circadian time - 5-HT serotonin  相似文献   

19.
《Process Biochemistry》2014,49(6):996-1004
In this study, Dunaliella tertiolecta cells were shifted to nitrate-deficient (ND) and/or high light (HL) conditions at different growth phases. Profiling of global metabolites and fatty acids of D. tertiolecta cells were performed by shifting cultivation condition at exponential (EX) and stationary (ST) phases. ND and/or HL induced saturation of fatty acids by increasing saturated fatty acid and monounsaturated fatty acid and decreasing polyunsaturated fatty acid in D. tertiolecta cultures. The relative levels of metabolites like proline, valine, isoleucine, and myoinositol, which act as osmolytes, and ergosterol and glycerol, which are related to the osmoregulatory mechanism, decreased to a greater extent by ND than HL shifts. In addition, the effects of these shifts at the EX phase were observed to be more significant in most of the fatty acids. The results of this research might be applicable to the interpretation of metabolic synthesis and fatty acid production, and to the optimization of cultivation conditions for the use of D. tertiolecta and other microalgae as biofuels or nutraceutical sources.  相似文献   

20.
General anaesthesia administered during the day has previously been shown to phase shift the honey bee clock. We describe a phase response curve for honey bees (n=105) to six hour isoflurane anaesthesia. The honey bee isoflurane PRC is “weak” with a delay portion (maximum shift of –1.88 hours, circadian time 0 – 3) but no advance zone. The isoflurane-induced shifts observed here are in direct opposition to those of light. Furthermore, concurrent administration of light and isoflurane abolishes the shifts that occur with isoflurane alone. Light may thus provide a means of reducing isoflurane–induced phase shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号