首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanelles of Cyanophora paradoxa Korsch. are photosynthetically active obligate endosymbionts in which phycobiliproteins serve as the major accessory pigments. Freeze-fracture electron micrographs of thylakoids in isolated cyanelles reveal long parallel rows of particles covering most of the E-face, while a more random particle arrangement is evident in some areas. The center-to-center spacing of particles within these rows is about 10 nanometers. Their mean diameter was measured at 9.4 nanometers. The particles on the P-face have a mean diameter of 7.2 nanometers. Thylakoids that retained nearly the full complement of phycobiliproteins (determined spectrophotometrically and by gel electrophoresis) were isolated from the cyanelles. In thin sections of these preparations, rows of disc-shaped phycobilisomes are evident on the surface of the thylakoids. The spacing of the rows of phycobilisomes corresponds to that of the rows of E-face particles (approximately 45 nanometers, center to center). The periodicity of the disc-shaped phycobilisomes within a row is 10 nanometers suggesting a one-to-one association between phycobilisomes and E-face particles.

In addition, visualization of the protoplasmic surface (PS) of isolated thylakoids by freeze-etch electron microscopy shows that rows of disc-shaped phycobilisomes are aligned directly above rows of particles exhibiting two subunits, presumably the P-surface projections of the 10-nanometer intramembrane particles. These observations, together with earlier studies indicating that the 10-nanometer E-face particles probably represent photosystem II (PSII) complexes, suggest that phycobilisomes are positioned on the thylakoid surface in direct contact with PSII centers within the thylakoid membrane.

The inner envelope membrane of the cyanelles, observed in freeze-fracture replicas, resembles cyanobacterial plasma membranes and is dissimilar to the chloroplast envelope membranes of red or green algae. The envelope of isolated cyanelles exhibits two additional layers: (a) a 5- to 7-nanometer-thick layer that lies adjacent to the inner membrane and which seems to correspond to the peptidoglycan layer of cyanobacteria; and (b) a layer external to the purported peptidoglycan layer that exhibits fracture faces similar to those of the lipopolysaccharide layer of gram negative bacteria. Our findings indicate that the supramolecular architecture of cyanelles differs only slightly from free-living cyanobacteria to which they are presumably related.

  相似文献   

2.
The structure and arrangement of phycobilisomes of the unicellular red alga Porphyridium cruentum is compared with the organization of the thylakoid freeze-fracture particles in order to determine the relationship between phycobilisomes and photosystem II. The hemi-ellipsoidal phycobilisomes, 20 nm thick, are predominantly organized into rows; their centre to centre periodicity is 30–40 nm, so that they are well separated by a gap of 10–20 nm. The phycobilisomes are cleaved by a central faint furrow, parallel to the long axis from top to base. The organization of the exoplasmic particles in rows is similar to the arrangement of the phycobilisomes so that a structural relationship between both systems, previously demonstrated in cyanobacteria, is evident. Within the rows, the 10 nm EF-particles are grouped in tetrameric complexes separated by distances similar to those observed for phycobilisomes. We propose that the tetrameric EF-particle complexes correspond to tetrameric photosystem II complexes which bind one hemi-ellipsoidal phycobilisome on the stroma exposed surface of the thylakoid. A hypothetical model of this photosystem II-phycobilisome complex is presented.  相似文献   

3.
The ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta Thuret grown in red, blue and green light was studied both in ultrathin sections and in replicas of rapidly frozen cells. High activity of dictyosornes and mucilage sacs results in a dramatic decrease of the protoplasmic area and in thicker cell walls in red light in comparison with blue light and the control. There are numerous well‐formed phycobili‐somes in blue light, whereas not well‐formed ones are present in red and especially in green light. There are also many phycobilisomes in the intrapyrenoidal thylakoids in blue light, fewer in green light, but they are absent in red light and in the control. It seems that in red and especially in green light, the phycobilisomes have fewer rods than in blue light. In green light, chloroplasts bear numerous genophores in contrast to blue and red light. The spacings of neighboring parallel thylakoids are as follows: control 64.3 nm, blue light 90.6 nm, red light 41.3 nm, green light 43.7 nm. Due to the relatively small spacing of the neighboring parallel thylakoids in red (41.3 nm) and in green light (43.7 nm) and of the given height of phycobilisomes (35 nm), the alternate phycobilisomes attached to neighboring lamellae are forced to interdigitate. The density of phycobilisomes per square micrometer of thylakoid surface dramatically increases in blue light (800 μm?2) in relation to red (250 μm?2) and green light (180 μm?2). The protoplasmic fracture face of the thylakoids reveals numerous, tightly packed, but randomly distributed particles. The particle size distribution is uniform in the two types of fracture faces, with an average diameter of about 11.5 nm. In blue light, both the phycobilisomes and exoplasmic face particles are organized into rows with a spacing of 60–70 nm. The results (changes: in the protoplasmic area; in the spacing of the thylakoids; in phycobilisome arrangement; in structure, shape and size of phycobilisomes; and in the accumulation of plastoglobuli), have shown that the monochromatic light (blue, red and green) brings about marked changes in the package effect and consequently in the efficiency of light absorption. In addition, the blue light contributes to the intense production of chlorophyll a, phycoerythrin, phycocyanin and soluble proteins, while intense production of polysaccharidic material is attributed to red light.  相似文献   

4.
从钝顶螺旋藻中分离制备完整藻胆体 ,然后滴加于空气 水界面上 ,应用LB膜技术制备藻胆体LB膜。结果表明 ,藻胆体在空气 水界面上具有很好的成膜性能。将藻胆体LB单层膜转移到刚揭开的云母表面 ,喷一层金 ,然后用扫描隧道显微镜观察。结果表明 ,藻胆体在Langmuir Blodgett膜中的排列方式与其在体内类囊体膜表面的排列方式类似 ,一排排聚集在一起 ,然后排列成膜。藻胆体的“核”吸附在云母表面 ,而藻胆体的“杆”伸向外面。由于钝顶螺旋藻易于规模化培养 ,藻胆体容易批量制备 ,加之藻胆体具有的独特的光物理、光化学特性和良好的成膜性能 ,以及本身就是纳米量级的颗粒 (5 0 70nm) ,预示着藻胆体在纳米光电子器件中具有很好的应用前景。  相似文献   

5.
Cyanidium caldarium wild type and III-C mutant lacking phycobilisomes were compared with respect to the ultrastructural organization of particles on the freeze-fractured thylakoid membrane.  相似文献   

6.
Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a typical thylakoid membrane system was observed within 24 hours after an initial lag phase of 6 to 8 hours. Furthermore, activation of photosystem II complexes and restoration of a functional photosynthetic electron transport chain appears to be linked to the biogenesis of organized thylakoid membrane pairs.Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. The intracellular thylakoid membranes of cyanobacteria harbor the protein complexes of the photosynthetic electron transport chain (Nowaczyk et al., 2010; Bernat and Rögner, 2011). The photosynthetic electron transport chain is composed of three large membrane protein complexes, i.e. PSII, the cytochrome b6f complex, and PSI. Excitation energy trapping by PSII results in water splitting at the PSII donor side within the thylakoid lumen and transport of electrons to the primary and secondary electron accepting quinone molecules QA and QB, respectively. Following double reduction and protonation, QB is released from PSII into the plastoquinone (PQ) pool and delivers electrons to the cytochrome b6f complex. The cytochrome b6f complex transfers the electrons to the soluble electron carrier plastocyanin or cytochrome c6, which subsequently reduces PSI. For efficient light harvesting, cyanobacteria contain soluble light-harvesting antenna proteins, the phycobilisomes (PBSs), which transfer light energy to the photosynthetic reaction centers. In cyanobacteria, the PSI-to-PSII ratio is controlled by light and by the redox state of the PQ/PQH2-pool (Fujita et al., 1987), and under high-light growth conditions, typically less PSI is present in cyanobacterial thylakoid membranes compared with low-light conditions (Fujita et al., 1994).Thylakoid membranes and photosynthetic electron transport are essential for phototrophic growth of cyanobacterial cells. Despite their importance for survival of cyanobacteria, biogenesis of thylakoid membranes is yet not well understood. It still is an ongoing debate whether the internal membrane systems (cytoplasmic and thylakoid membranes) are connected in cyanobacteria or not, and thus whether thylakoids represent a completely separated membrane entity (Liberton et al., 2006; van de Meene et al., 2006, 2012; Schneider et al., 2007). Up to now, only few proteins have been described to be involved in thylakoid membrane biogenesis. Among them the Vipp1 protein (vesicle inducing protein in plastids1) seems to play an important role in thylakoid membrane biogenesis, as in chloroplasts of Arabidopsis (Arabidopsis thaliana) and in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), depletion of Vipp1 results in a reduced thylakoid membrane system (Kroll et al., 2001; Westphal et al., 2001). While the exact physiological function of the protein is not yet known (Vothknecht et al., 2012), depletion of Vipp1 in Synechocystis not only results in reduced thylakoid membrane formation, but also affects the activity and structure of components of the photosynthetic electron transport chain (Fuhrmann et al., 2009; Gao and Xu, 2009).As complexes of the respiratory electron transport chain are also localized in cyanobacterial thylakoids, the photosynthetic and respiratory electron transport pathways are highly interconnected and both contribute to formation of an electrochemical gradient across the thylakoid membrane and energy production. Due to this, Synechocystis is able to grow completely heterotrophically under light-activated photoheterotrophic growth (LAHG) conditions in the presence of high Glc concentrations (Anderson and McIntosh, 1991; Smart et al., 1991).In this study, we have used dark-grown Synechocystis cells to investigate “greening” of Synechocystis cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions. Following transfer of Synechocystis cells into the light, complete restoration of a typical thylakoid membrane system was observed within 24 h. While dark-grown Synechocystis cells contained only rudimentary thylakoid membranes, they still contained a high concentration of PBSs, active PSI as well as inactive PSII complexes. Activation of PSII complexes appears to be linked to the biogenesis of organized thylakoid membrane pairs.  相似文献   

7.
Biogenesis of thylakoid membranes in both chloroplasts and cyanobacteria is largely not understood today. The vesicle-inducing protein in plastids 1 (Vipp1) has been suggested to be essential for thylakoid membrane formation in Arabidopsis (Arabidopsis thaliana), as well as in the cyanobacterium Synechocystis sp. PCC 6803, although its exact physiological function remains elusive so far. Here, we report that, upon depletion of Vipp1 in Synechocystis cells, the number of thylakoid layers in individual Synechocystis cells decreased, and that, in particular, the content of photosystem I (PSI) complexes was highly diminished in thylakoids. Furthermore, separation of native photosynthetic complexes indicated that PSI trimers are destabilized and the monomeric species is enriched. Therefore, depletion of thylakoid membranes specifically affects biogenesis and/or stabilization of PSI in cyanobacteria.In chloroplasts and cyanobacteria the energy transfer between PSI and PSII is regulated in a light-dependent manner (for a recent review, see Kramer et al., 2004). The two photosystems are connected by the cytochrome b6f complex, and electron transfer from PSII via the cytochrome b6f complex to PSI is believed to be regulated by the redox state of the plastoquinol pool potentially also involving the cytochrome b6f complex (Fujita et al., 1987; Murakami and Fujita, 1993; Schneider et al., 2001, 2004; Pfannschmidt, 2003; Volkmer et al., 2007). Transfer of light energy to the two photosystems is mediated by light-harvesting complexes, and in cyanobacteria light is harvested by the soluble extramembranous phycobilisomes. The efficient energy transfer to PSI and PSII has to be balanced to synchronize the function of the two photosystems. In response to changing light intensities and qualities, energy coupling between the phycobilisomes and the photosystems changes, which allows a rapid adjustment of light absorbance by the individual photosystems. Furthermore, besides this short-term adaptation mechanism, it has been shown in many studies that on a longer term in cyanobacteria the ratio of the two photosystems changes depending on the light conditions (Manodori and Melis, 1986; Murakami and Fujita, 1993; Murakami et al., 1997). Upon shifting cyanobacterial cells from low-light to high-light growth conditions, the PSI-to-PSII ratio decreases due to selective suppression of the amount of functional PSI. In recent years, some genes have already been identified that are involved in this regulation of the photosystem stoichiometry (Hihara et al., 1998; Sonoike et al., 2001; Fujimori et al., 2005; Ozaki et al., 2007).Whereas in chloroplasts of higher plants and green algae the amounts of the two photosystems change in response to changing light conditions (Melis, 1984; Chow et al., 1990; Smith et al., 1990; Kim et al., 1993), it has already been noted a long time ago that the chloroplast ultrastructure also adapts to high-light and low-light conditions (Melis, 1984). Chloroplasts of plants grown under low light or far-red light have more thylakoid membranes than chloroplasts of plants grown under high light or blue light (Anderson et al., 1973; Lichtenthaler et al., 1981; Melis and Harvey, 1981). There appears to be a direct correlation between the chlorophyll content and the amount of thylakoids per chloroplast because light harvesting is increased by enhanced chlorophyll and thylakoid membrane content per chloroplast. Thus, chloroplasts adapt to high light both by a reduction of thylakoid membranes and by a decrease in the PSI-to-PSII ratio.Thylakoid membranes are exclusive features of both cyanobacteria and chloroplasts, and it still remains mysterious how formation of thylakoid membranes is organized. Many cellular processes, like lipid biosynthesis, membrane formation, protein synthesis in the cytoplasm and/or at a membrane, protein transport, protein translocation, and protein folding have to be organized and aligned for formation of internal thylakoid membranes. The recent observation that deletion of the vipp1 gene in Arabidopsis (Arabidopsis thaliana) results in complete loss of thylakoid membranes has indicated that Vipp1 is involved in biogenesis of thylakoid membranes. Further analysis has suggested that Vipp1 could be involved in vesicle trafficking between the inner envelope and the thylakoid membrane of chloroplasts (Kroll et al., 2001). Because of this, the protein was named Vipp1, for vesicle-inducing protein in plastids 1. Depletion of Vipp1 strongly affected the ability of cyanobacterial cells to form proper thylakoid membranes (Westphal et al., 2001) and, consequently, also in cyanobacteria Vipp1 appears to be involved in formation of thylakoid membranes. A Vipp1 depletion strain of Arabidopsis is deficient in photosynthesis, although the defect could not be assigned to a deficiency of a single photosynthetic complex, but appeared to be caused by dysfunction of the entire photosynthetic electron transfer chain (Kroll et al., 2001). Therefore, depletion of Vipp1 in Arabidopsis seems to affect thylakoid membrane formation rather than the assembly of thylakoid membrane protein complexes (Aseeva et al., 2007). However, for cyanobacteria, it is not clear yet how diminishing the amount of thylakoid membrane layers would affect the amount and stoichiometry of the two photosystems.Here, we present the generation and characterization of a Vipp1 depletion strain of the cyanobacterium Synechocystis sp. PCC 6803. Upon depletion of Vipp1, a decrease in thylakoid membrane pairs in the generated mutant strain and, furthermore, a significant decrease in active PSI centers was observed. Moreover, trimerization of PSI also appeared to be impaired in the mutant strain. These results suggest that thylakoid membrane perturbations caused by the Vipp1 depletion directly affects PSI assembly and stability in cyanobacterial thylakoid membranes.  相似文献   

8.
The supramolecular organization of the thylakoid membranes of the thallus stage in the red alga Porphyra leucosticta is studied in replicas of rapidly frozen and fractured cells. Freeze-fractured thylakoid membranes exhibit only two types of fracture faces (EF and PF), because the lamellae in red algal chloroplasts are not stacked. The PF reveals numerous, tightly packed, but randomly distributed particles (density range from 2970 to 3550 particles/μm2). In contrast, the EF particles appear organized into parallel rows, the spacing of which is about 60–70 nm (about 8–9 particles occur along 100 nm of the line that is formed). Significant numbers of single EF particles are randomly distributed between the EF particle rows. The particles on both fracture faces (PF and EF) fall into two size classes: 10 to 11 nm (major size class) and 14 to 15 nm (minor size class).  相似文献   

9.
G. Wanner  H. -P. Köst 《Protoplasma》1980,102(1-2):97-109
Summary Phycobilisomes ofPorphyridium cruentum were investigated in ultrathin sectionsin situ and after isolation and positive or negative staining. The phycobilisomes have the approximate shape of one half of a compressed rotation ellipsoid with the following dimensions: length 2 a=40±4 nm, width 2 b=19±2 nm, height c=28±3 nm. The phycobilisomes form rows and pillars on the thylakoid membranes. A plug-like structure (foot) which apparently fixes the phycobilisomes to the thylakoid membrane is described.  相似文献   

10.
The ultrastructure of the cell wall and the thylakoid membranes of the thermophilic cyanobacterium Synechococcus lividus was studied by freezefracture electron microscopy after temperature shifts. Different fracture faces of the outer, the cytoplasmic and the thylakoid membranes were demonstrated when the preparation-temperature was in the range of the optimal growth temperature at 52°C or after fixation at 52°C. In the outer membrane of the cell wall two fracture faces with holes and 7.5 nm intramembrane particles were detected. On both the outer (EF) and inner (PF) leaflet of the cytoplasmic membrane randomly distributed particles were demonstrated. The particle density on the PF-face was approx. three times that of the EF-face. The EF-face of the thylakoid membrane exposed rows of particles with an average diameter of 10 nm. The spacing between the particle rows was 35–50 nm. This regular particle arrangement on the EF-face was demonstrated only in a few cases. Mostly the intramembrane particles were distributed randomly on the thylakoid fracture faces. The particle density of thylakoids with a random distribution was approx. in the same range both on the EF-and PF-face. The EF-particles fall into four groups of 9,10,11, and 12.5 nm. The main particle class was the 10 nm class. The PF-face exposed smaller particles with two maxima at 8.5–9 nm and 10 nm. When Synechococcus lividus OH-53s was chilled to temperatures below 30–35°C before the freeze-etch preparation a phase transition took place after the temperature shift. On the fracture faces of the thylakoid and cytoplasmic membranes particle depleted areas occurred. The size of the areas were different in both membranes and dependent on the velocity of cooling. Contrary to Synechococcus lividus OH-53s in the mesophilic Synechococcus strain 6910 the phase transition point was 15°C. The lower phase transition point may be due to a higher content of unsaturated fatty acids.Dedicated to Prof. D. Peters (Hamburg) on the occasion of the 65th anniversary of his birthday  相似文献   

11.
The regular spacing of peaks throughout the amplitude distribution of miniature end-plate potentials, quantal evoked end-plate potentials and quantal currents was demonstrated using autocorrelations and power density spectra calculated from the number of events in the successive bins of the histograms built by Matteson et al. (1979), Kriebel & Florey (1983) and Erxleben & Kriebel (1984). At the same mouse neuromuscular junction, the calculated interpeak was constant for evoked and spontaneous quantal releases, throughout sequential sampling and after change of bin size. The presence of regular peak intervals supports the hypothesis that quantal potentials are composed of potential subunits the size of the smallest subminiature potential. Challenging the hypothesis of an acetylcholine quantum composed of acetylcholine subunits, a postsynaptic origin of the subunit is proposed on the basis of the spatial arrangement in rows of the ACh receptors. The ACh-saturating patch evoked by a quantum release (Land et al., 1980, 1981) activates 10-20 rows of receptors, which is roughly the number of subunits composing a quantal event. Therefore the position of the ACh patch or the continuous variations in its size might cause stepwise variations in the total number of ACh receptors activated by an ACh quantum.  相似文献   

12.
Redlinger T  Gantt E 《Plant physiology》1981,68(6):1375-1379
Purified phycobilisomes of Porphyridium cruentum were solubilized in sodium dodecyl sulfate and resolved by sodium dodecyl sulfate-acrylamide gel electrophoresis into nine colored and nine colorless polypeptides. The colored polypeptides accounted for about 84% of the total stainable protein, and the colorless polypeptides accounted for the remaining 16%. Five of the colored polypeptides ranging in molecular weight from 13,300 to 19,500 were identified as the α and β subunits of allophycocyanin, R-phycocyanin, and phycoerythrin. Three others (29,000-30,500) were orange and are probably related to the γ subunit of phycoerythrin. Another colored polypeptide had a molecular weight of 95,000 and the characteristics of long wavelength-emitting allophycocyanin. Sequential dissociation of phycobilisomes, and analysis of the polypeptides in each fraction, revealed the association of a 32,500 molecular weight colorless polypeptide with a phycoerythrin fraction. The remaining eight colorless polypeptides were in the core fraction of the phycobilisome, which also was enriched in allophycocyanin. In addition, the core fraction was enriched in a colored 95,000 dalton polypeptide. Inasmuch as a polypeptide with the same molecular weight is found in thylakoid membranes (free of phycobilisomes), it is suggested that this polypeptide is involved in anchoring phycobilisomes to thylakoid membranes.  相似文献   

13.
The in vitro neuralization of hESCs has been widely used to generate central and peripheral nervous system components from neural precursors (Bajpai et al., 2009; Curchoe et al., 2010), most often through an intermediate “rosette” stage. Here we confirm that hESC derived neuro-epithelial rosettes express many characteristics of the developing embryonic neural plate (Aaku-Saraste et al., 1996), characterized by expression of the tight junction proteins ZO-1 and N-Cadherin. Moreover, neuro-epithelial rosettes display a characteristic acetylated alpha tubulin cytoskeletal arrangement (similar to that observed in the developing embryonic neural plate) (Bhattacharyya et al., 1994).Demonstrated here for the first time MKLP was observed in a hESC model system. We found MKLP expression in small particles in between mitotic spindles, large particles aggregating in the lumen of neuroepithelial rosettes, and we did not observe MKLP in the nucleus of hESC derived neural precursors as previously described in the HeLa cell line. We observed MKLP + particles in aggregations in the lumen of “early” rosette structures. Furthermore, we observed that MKLP+ particle aggregations can also be lost from the lumens of hESC derived neuro-epithelial rosettes, similar to a phenomenon observed in the developing neural tube in vivo (Marzesco et al., 2005). We determined that this loss of MKLP+ particles occurs from “late” as opposed to “early” stage neuro-epithelial rosettes (characterized by junction type).Disrupting the apical-basal polarization of “early” stage rosettes with a 1% Matrigel overlay (Krtolica et al., 2007) nearly ablates MKLP particle aggregation in the lumen of rosettes, demonstrating that the apical-basal polarity of early NE cells is necessary for lumenal MKLP particle aggregation.We conclude that early hESC derived neuro-epithelial rosettes can model early neurulation events, such as the transition from neural plate like cells to neural tube like cells (i.e. symmetric to asymmetric NE cell division) demonstrated by polarized MKLP particle inheritance and distribution using junction type as a measure of stage.  相似文献   

14.
The mechanism of excitation energy distribution between the two photosystems (state transitions) is studied in Synechocystis 6714 wild type and in wild type and a mutant lacking phycocyanin of Synechocystis 6803. (i) Measurements of fluorescence transients and spectra demonstrate that state transitions in these cyanobacteria are controlled by changes in the efficiency of energy transfer from PS II to PS I (spillover) rather than by changes in association of the phycobilisomes to PS II (mobile antenna model). (ii) Ultrastructural study (freeze-fracture) shows that in the mutant the alignment of the PS II associated EF particles is prevalent in state 1 while the conversion to state 2 results in randomization of the EF particle distribution, as already observed in the wild type (Olive et al. 1986). In the mutant, the distance between the EF particle rows is smaller than in the wild type, probably because of the reduced size of the phycobilisomes. Since a parallel increase of spillover is not observed we suggest that the probability of excitation transfer between PS II units and between PS II and PS I depends on the mutual orientation of the photosystems rather than on their distance. (iii) Measurements of the redox state of the plastoquinone pool in state 1 obtained by PS I illumination and in state 2 obtained by various treatments (darkness, anaerobiosis and starvation) show that the plastoquinone pool is oxidized in state 1 and reduced in state 2 except in starved cells where it is still oxidized. In the latter case, no important decrease of ATP was observed. Thus, we propose that in Synechocystis the primary control of the state transitions is the redox state of a component of the cytochrome b 6/f complex rather than that of the plastoquinone pool.Abbreviations DCCD dicyclohexylcarbodiimide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EF exoplasmic face - PQ plasto-quinone - PS photosystem - PBS phycobilisome  相似文献   

15.
THE CILIARY NECKLACE : A Ciliary Membrane Specialization   总被引:30,自引:19,他引:11       下载免费PDF全文
Cilia, primarily of the lamellibranch gill (Elliptio and Mytilus), have been examined in freeze-etch replicas. Without etching, cross fractures rarely reveal the 9 + 2 pattern, although suggestions of ninefold symmetry are present. In etched preparations, longitudinal fractures through the matrix show a triplet spoke alignment corresponding to the spoke periodicity seen in thin sections. Dynein rows can be visualized along the peripheral microtubules in some preparations. Fracture faces of the ciliary membrane are smooth with few membrane particles, except in the regions adjacent to the basal plate. In the transition region below the plate, a unique particle arrangement, the ciliary necklace, is found. In the Elliptio gill, on fracture face A the necklace is comprised of three well-defined rows or strands of membrane particles that encircle the ciliary shaft. The rows are scalloped and each scallop corresponds to a peripheral doublet microtubule. In thin sections at the level of these particles, a series of champagne-glass structures link the microtubular doublets to the ciliary membrane. The ciliary necklace and this "membrane-microtubule" complex may be involved in energy transduction or the timing of ciliary beat. Comparative studies show that these features are present in all somatic cilia examined including those of the ameboflagellate Tetramitus, sea urchin embryos, rat trachea, and nonmotile cilia of cultured chick embryo fibroblasts. The number of necklace strands differs with each species. The necklace has not been found in rat or sea urchin sperm.  相似文献   

16.
A large set of electron microscopy projections of photosystem II (PSII) dimers isolated from the cyanobacterium Synechococcus elongatus was characterized by single particle image analysis. In addition to previously published maps at lower resolution [Boekema, E.J., Hankamer, B., Bald, D., Kruip, J., Nield, J., Boonstra, A.F., Barber, J. & R?gner, M. (1995) Proc. Natl Acad. Sci. USA 92, 175-179], the new side-view projections show densities of all three lumenal extrinsic proteins, i.e. the 33-kDa, 12-kDa and the cytochrome c-550 subunit encoded by psbO, psbU and psbV, respectively. Analysis of the size and shape of the top-view projections revealed a small number of photosystem II particles of about double the size of the usual dimers. Size and quantity of these 'double dimers' correlates with a small fraction of 1000-kDa particles found with HPLC-size-exclusion chromatographic analysis. Because many cyanobacteria contain dimeric photosystem II complexes arranged in rows within the membrane, the double dimers can be considered as the breakdown fragments of these rows. Their analysis enabled the detection of the arrangement of photosystem II within the rows, in which the dimers interact with other dimers mostly with their tips, leaving a rather open center at the interfaces of two dimers. The dimers have a repeating distance of only 11.7 nm. As a consequence, the phycobilisomes, located on top of PSII and functioning in light-harvesting, must be closely packed or almost touch each other, in a manner similar to a recently suggested model [Bald, D., Kruip, J. & R?gner, M. (1996) Photosynthesis Res. 49, 103-118].  相似文献   

17.
In most species of lepidopteran insects, anteroposterior rows formed by scales are arranged at regular intervals in the adult wing; within each row two kinds of scales are alternately arranged. To investigate the cellular basis for the scale arrangement pattern, we examined cell arrangement in the epidermal monolayer of the pupal wing of a small white cabbage butterfly, Pieris rapae , by scanning electron microscopy and light microscopy.
The arrangement of scale precursor cells, closely resembling that of scales in the adult wing, was observed in the wing epidermis of the early pupa. Scale precursor cells are proximodistally elongated and form anteroposterior rows. Within a row two kinds of scale precursor cells are nearly alternately arranged, which is not so precise as the alternation of scales in the adult wing. Individual rows of scale precursor cells are separated by rows of single or double undifferentiated general epidermal cells. Occasionally, arrangement abnormalities occur both in the adult and the pupal wing. The cellular basis for the regular spacing of scale rows is discussed.  相似文献   

18.
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranes in vivo. The unicellular cyanobacterium Synechococcus sp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. In Synechococcus 7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 x 10(-10) cm(2) s(-1) at 30 degrees C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexes in vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.  相似文献   

19.
不同群体结构夏玉米灌浆期光合特征和产量变化   总被引:7,自引:0,他引:7  
大田试验以夏玉米为试料,采用裂裂区试验设计,密度设计包含75000、90000\,105000株/hm2 3个密度作为主区,每个密度处理包括: ①等行距60 cm×单株留苗,②等行距60 cm×双株三角留苗,③宽窄行距(宽行70 cm + 窄行距50 cm)×单株留苗和 ④宽窄行距×双株三角留苗共12种方式进行处理,测定光合及叶绿素荧光参数。研究不同群体结构对夏玉米灌浆期群体光合特性的影响。结果表明,在吐丝期,随着种植密度的增加,群体光合速率提高;蜡熟期以90000株/hm2最高,种植方式上表现为宽窄行大于等行距种植,双株留苗种植方式大于单株种植方式,差异均达到显著水平;随着种植密度的提高,群体内3个层次叶片最大光能转换效率(Fv/Fm)、光化学猝灭系数(qP)逐渐降低,种植方式基本表现为宽窄行大于等行距,留苗方式表现为双株大于单株。试验条件下,以90000株/hm2,宽窄行,双株三角留苗产量最高。  相似文献   

20.
The Gapped Consecutive-Ones Property (C1P) Problem, or the (k, δ)-C1P Problem is: given a binary matrix M and integers k and δ, decide if the columns of M can be ordered such that each row contains at most k blocks of 1's, and no two neighboring blocks of 1's are separated by a gap of more than δ 0's. This problem was introduced by Chauve et al. ( 2009b ). The classical polynomial-time solvable C1P Problem is equivalent to the (1, 0)-C1P problem. It has been shown that, for every unbounded or bounded k ≥ 2 and unbounded or bounded δ ≥ 1, except when (k, δ) = (2, 1), the (k, δ)-C1P Problem is NP-complete (Maňuch et al., 2011 ; Goldberg et al., 1995 ). In this article, we study the Gapped C1P Problem with a third parameter d, namely the bound on the maximum number of 1's in any row of M, or the bound on the maximum degree of M. This is motivated by the reconstruction of ancestral genomes (Ma et al., 2006 ; Chauve and Tannier, 2008 ), where, in binary matrices obtained from the experiments of Chauve and Tannier ( 2008 ), we have observed that the majority of the rows have low degree, while each high degree row contains many rows of low degree. The (d, k, δ)-C1P Problem has been shown to be polynomial-time solvable when all three parameters are fixed (Chauve et al., 2009b ). Since fixing d also fixes k (k ≤ d), the only case left to consider is the case when δ is unbounded, or the (d, k, ∞)-C1P Problem. Here we show that for every d > k ≥ 2, the (d, k, ∞)-C1P Problem is NP-complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号