首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Araucaria araucana seeds and seedlings respond to wounding after48 h with a 3- to 4-fold increase of hydroxyproline-rich glycoproteins(HRGP) in the cell walls of the embryo and with a 15-fold increasein the cell walls of the megagametophyte. The megagametophytewalls accumulate six times more hydroxyproline per µgof cell wall protein than the embryo in this wound response.Tissue immunoprints of different parts of seeds and seedlingsobtained with polyclonal antibodies raised against HRGP fromcarrot roots or soybean seed coats indicate that the responseis due to an increase in a protein similar to the ones seenin carrot roots or soybean seed coats. Western blots of embryoand megagametophyte cell wall proteins subjected to SDS-PAGEshow three bands that cross-react with these antibodies. Ina native cationic gel system followed by Western blot analysis,only two bands react with these antibodies. Expression of suchproteins in Araucaria araucana seeds seems to be developmentallyregulated and tissue specific, since they are present mainlyin the megagametophyte and the root cap of the embryo. Key words: Araucaria araucana, seeds, seedlings, cell walls, hydroxyproline-rich glycoproteins  相似文献   

2.
The class III pistil-specific PELP proteins (PELPIII) of Nicotiana tabacum includes at least two members of highly soluble glycoproteins containing glucan modules that are characteristic for arabinogalactan proteins (AGPs). PELPIII accumulates in the style transmitting tissue (TT) during pistil development and, at flower anthesis, is present in the intercellular matrix (IM) of non-pollinated pistils. After pollination, PELPIII appears to be directly and completely translocated from the IM into the pollen tube callose walls, no significant accumulation was observed in the primary wall in the tip. In the spent parts of the pollen tubes these proteins become detectable against the remnants of the tube cell membrane and in the callose plugs. Different protein extraction procedures of PELPIII from pollinated tobacco pistils showed that these proteins remain in the highly soluble protein fraction and are not modified by the growing pollen tubes. These data concur with a role in IM development and pollen tube growth. In addition, the data show that the PELPIII are able to reach the cell membrane, facilitated by an already present or induced high porosity of the tube wall and an additional, yet unknown, mechanism. The differences in behaviour between the three related classes of style IM glycoproteins of Nicotiana, namely, PELPII, TTS and the 120 kDa glycoprotein, are proposed to connect more to their differences in glycosylation than to major differences in amino acid sequence.  相似文献   

3.
The hydroxyproline-rich root nodules of legumes provide a microaerobic niche for symbiotic nitrogen-fixing Rhizobacteria. The contributions of the cell wall and associated structural proteins, particularly the hydroxyproline-rich glycoproteins (HRGPs), are therefore of interest. Our approach involved identification of the protein components by direct chemical analysis of the insoluble wall. Chymotryptic peptide mapping showed a "P3-type" extensin containing the highly arabinosylated Ser-Hyp4-Ser-Hyp-Ser-Hyp4-Tyr3-Lys motif as a major component. Cell wall amino acid analyses and quantitative hydroxyproline arabinoside profiles, predominantly of tri- and tetraarabinosides, confirmed this extensin as the major structural protein in the cell walls of both root nodules and uninfected roots. On the other hand, judging from the Pro, Glu and non-glycosylated Hyp content, the nodule-specific proline-rich glycoproteins, such as the early nodulins (ENOD-PRPs), are present in much lesser amounts. Although we isolated no PRP peptides from nodule cell walls, a single PRP peptide from root cell walls confirmed the presence of a PRP in roots and represented the first direct evidence for a crosslinked PRP in muro. Compared with root cell walls (approximately 7% protein dry weight) nodule cell walls contained significantly more protein (approximately 13% dry weight) with an overall amino acid and peptide composition indicating the presence of structural protein unrelated to the HRGPs.  相似文献   

4.
When radioactive d-glucosamine is provided to Acer pseudoplatanus cells in liquid culture in order to label those glycoproteins that contain amino sugars, it is incorporated predominantly into a crude cell wall fraction. This observation was confirmed histologically by preparing autoradiographs of thin tissue sections from plasmolyzed cells. Highly purified cell wall material from unlabeled cells has also been shown to contain small amounts of glucosamine. Similarly, about one-half of the amino sugar recovered from cultured cells of Nicotiana tabacum is present in their cell walls. In corn roots, however, the labeled glycoproteins that are formed after glucosamine incorporation are predominantly cytoplasmic and not deposited outside the protoplast.  相似文献   

5.
Patterns of proteins excreted during pollen germination, of germinating pollen and of the stylar and placental fluids excreted by cells along the pistil pathway of Gasteria verrucosa were analyzed by electrophoresis. The medium from germinating pollen contains several pollen exudate proteins as well as glycoproteins from the sticky pollen wall coating. No protein could be detected in the stigmatic exudate. The stylar fluid shows a protein pattern different from that of the placental fluid. The placental fluid contains some glycoproteins. After pollination, three pollen proteins begin to appear in the stylar fluid. Two of these pollen proteins remain present in the placental fluid. Some placental fluid proteins and glycoproteins are modified after pollination. The difference in protein patterns demonstrates the heterogeneity of proteins in the pollen tube pathway and suggests that proteins excreted by the pollen tube interact with other proteins in the pistil pathway, especially those in the placental fluid.  相似文献   

6.
The extracellular transglutaminases (TGs) in eukaryotes are responsible for the post-translational modification of proteins through different reactions, cross-linking being the best known. In higher plants, extracellular TG appears to be involved in roles similar to those performed by the mammalian counterparties. Since TGs are pleiotropic enzymes, to fully understand the role of plant enzymes it is possible to compare them with animal TGs, the most studied being TG of type 2 (TG2). The extracellular form of TG2 stabilizes the matrix and modulates the interaction of the integrin-fibronectin receptor, causing the adhesion of cells to the extracellular matrix; TG2 plays a role also in the pathogenicity. Extracellular TGs have also been identified in the cell wall of fungi, such as Candida and Saccharomyces, where they cross-link structural glycoproteins, and in Phytophthora, where they are involved in pathogenicity; in the alga Chlamydomonas, TGs link polyamines to glycoproteins thereby favouring the strengthening of cell wall. In higher plants, TG localized in the cell wall of flower petals appears to be involved in the structural reinforcement as well as senescence and cell death of the flower corolla. In the pollen cell wall an extracellular TG co-localizes with substrates and cross-linked products; it is required for the apical growth of pollen tubes. The pollen TG is also secreted into the extracellular matrix possibly allowing the migration of pollen tubes during fertilisation. Although pollen TGs seem to be secreted via vesicles transported along actin filaments, a different mechanism from the classical ER-Golgi pathway is possible, similar to TG2.  相似文献   

7.
The sugar composition of pollen grain and pollen tube cell walls was studied for Camellia japonica, C. sasanqua, C. sinensis, Tulipa gesneriana and Lilium longiflorum. In all species, the main components of pollen grain walls were arabinose, galactose, glucose and uronic acid. On the other hand, the pollen tube walls consisted mostly of glucose. The pollen tube wall of C. japonica was fractionated into hemicellulose, α-cellulose and pectic substance fractions in yields of 61, 19 and 3 %, respectively. The hemicellulose fraction was composed essentially of glucose. The sugar composition of the pollen tube wall was not influenced by the nature of exogenously supplied sugars. Rapid growth of the pollen tube seemed to correlate with the synthesis of hemicellulosic glucan.  相似文献   

8.

Aims

The principal contributor to the cation binding properties of roots is currently considered to be the cell wall or, alternatively, the plasma membrane. The aim of this study was to highlight their respective contributions in the binding properties.

Methods

Cell walls of a dicotyledon (Solanum lycopersicum L.) and monocotyledon (Triticum aestivum L.) were isolated from roots and their binding properties were compared to those of their respective roots. Cell wall and root binding capacities were evaluated by potentiometric titrations and cation exchange capacity measurements, while their biochemical composition was analyzed by 13C-NMR spectroscopy.

Results

The lower binding capacity of isolated cell walls compared to roots revealed that cell plasma membranes had a higher binding site density than cell walls. The significant decrease in some NMR signals, i.e. carbonyl C, N alkyl/methoxyl C and alkyl C regions, suggested that carboxyl, amine and phosphate binding sites, borne by proteins and phospholipid plasma membranes, contribute to the binding capacity.

Conclusions

Cell walls and plasma membranes were found to be jointly involved in root binding properties and their respective contributions seemed vary between plants.  相似文献   

9.
The expansin superfamily   总被引:8,自引:0,他引:8  
The expansin superfamily of plant proteins is made up of four families, designated α-expansin, β-expansin, expansin-like A and expansin-like B. α-Expansin and β-expansin proteins are known to have cell-wall loosening activity and to be involved in cell expansion and other developmental events during which cell-wall modification occurs. Proteins in these two families bind tightly to the cell wall and their activity is typically assayed by their stimulation of cell-wall extension and stress relaxation; no bona fide enzymatic activity has been detected for these proteins. α-Expansin proteins and some, but not all, β-expansin proteins are implicated as catalysts of 'acid growth', the enlargement of plant cells stimulated by low extracellular pH. A divergent group of β-expansin genes are expressed at high levels in the pollen of grasses but not of other plant groups. They probably function to loosen maternal cell walls during growth of the pollen tube towards the ovary. All expansins consist of two domains; domain 1 is homologous to the catalytic domain of proteins in the glycoside hydrolase family 45 (GH45); expansin domain 2 is homologous to group-2 grass pollen allergens, which are of unknown biological function. Experimental evidence suggests that expansins loosen cell walls via a nonenzymatic mechanism that induces slippage of cellulose microfibrils in the plant cell wall.  相似文献   

10.
Interactions between roots of Douglas-fir (DF; Pseudotsuga menziesii) seedlings and the laminated root rot fungus Phellinus sulphurascens were investigated using scanning and transmission electron microscopy and immunogold labelling techniques. Scanning electron micrographs revealed that P. sulphurascens hyphae colonize root surfaces and initiate the penetration of root epidermal tissues by developing appressoria within 2 d postinoculation (dpi). During early colonization, intra- and intercellular fungal hyphae were detected. They efficiently disintegrate cellular components of the host including cell walls and membranes. P. sulphurascens hyphae penetrate host cell walls by forming narrow hyphal tips and a variety of haustoria-like structures which may play important roles in pathogenic interactions. Ovomucoid–WGA (wheat germ agglutinin) conjugated gold particles (10 nm) confirmed the occurrence and location of P. sulphurascens hyphae, while four specific host pathogenesis-related (PR) protein antibodies conjugated with protein A–gold complex (20 nm) showed the localization and abundance of these PR proteins in infected root tissues. A thaumatin-like protein and an endochitinase-like protein were both strongly evident and localized in host cell membranes. A DF-PR10 protein was localized in the cell walls and cytoplasm of host cells while an antimicrobial peptide occurred in host cell walls. A close association of some PR proteins with P. sulphurascens hyphae suggests their potential antifungal activities in DF roots.  相似文献   

11.
The monoclonal antibody, CCRC-M1, which recognizes a fucose (Fuc)-containing epitope found principally in the cell wall polysaccharide xyloglucan, was used to determine the distribution of this epitope throughout the mur1 mutant of Arabidopsis. Immunofluorescent labeling of whole seedlings revealed that mur1 root hairs are stained heavily by CCRC-M1, whereas the body of the root remains unstained or only lightly stained. Immunogold labeling showed that CCRC-M1 labeling within the mur1 root is specific to particular cell walls and cell types. CCRC-M1 labels all cell walls at the apex of primary roots 2 d and older and the apices of mature lateral roots, but does not bind to cell walls in lateral root initials. Labeling with CCRC-M1 decreases in mur1 root cells that are undergoing rapid elongation growth such that, in the mature portions of primary and lateral roots, only the walls of pericycle cells and the outer walls of epidermal cells are labeled. Growth of the mutant on Fuc-containing media restores wild-type labeling, where all cell walls are labeled by the CCRC-M1 antibody. No labeling was observed in mur1 hypocotyls, shoots, or leaves; stipules are labeled. CCRC-M1 does label pollen grains within anthers and pollen tube walls. These results suggest the Fuc destined for incorporation into xyloglucan is synthesized using one or the other or both isoforms of GDP-D-mannose 4,6-dehydratase, depending on the cell type and/or developmental state of the cell.  相似文献   

12.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   

13.
Diatoms possess silica-based cell walls with species-specific structures and ornamentations. Silica deposition in diatoms offers a model to study the processes involved in biomineralization. A new wall is produced in a specialized vesicle (silica deposition vesicle, SDV) and secreted. Thus proteins involved in wall biogenesis may remain associated with the mature cell wall. Here it is demonstrated that EDTA treatment removes most of the proteins present in mature cell walls of the marine diatom Cylindrotheca fusiformis. A main fraction consists of four related glycoproteins with a molecular mass of approximately 75 kDa. These glycoproteins were purified to homogeneity. They consist of repeats of Ca2+ binding domains separated by polypeptide stretches containing hydroxyproline. The proteins in the EDTA extract aggregate and precipitate in the presence of Ca2+. Immunological studies detected related proteins in the cell wall of the freshwater diatom Navicula pelliculosa, indicating that these proteins represent a new family of proteins that are involved in the biogenesis of diatom cell walls.  相似文献   

14.
One- and two-dimensional electrophoresis of Nicotiana tabacum pollen and pollen tube proteins confirmed that a new protein is preferentially synthesized during pollen germination and tube growth and becomes the most abundant protein in pollen tubes. Analysis of proteins extracted with sodium dodecyl sulfate (SDS) from different pollen tube fractions showed that it is the most abundant non-covalently bound wall protein, characterized by molecular mass of 69 kDa, pI between 7.9 and 8.2, and glycosylation with glucose and/or mannose. Amino acid analysis revealed relative abundance of serine, glutamic acid and glycine, but did not show the presence of hydroxyproline. According to all these characteristics, it cannot be classified as an extensin-like protein. Another prominent wall-bound glycoprotein has a molecular mass of 66 kDa and the same pI as the 69 kDa glycoprotein. These two glycoproteins are similar also in ConA binding, rate of synthesis, and rapid incorporation into pollen tube walls. Their synthesis is strongly reduced by tunicamycin and this inhibition results in the occurrence of new polypeptides in the range of 57–61 kDa. Tunicamycin also inhibited pollen tube growth. At 10 ng ml-1 and 50 ng ml-1 the inhibitor reduced pollen tube mass after 24 h of culture by 30% and 85%, respectively. This indicates that tobacco pollen presents a system highly sensitive to tunicamycin and that cotranslational N-linked glycosylation on the rough endoplasmic reticulum is required for 66 and 69 kDa glycoprotein formation and for pollen tube growth. Although other proteins appear during pollen germination and tube growth, the new proteins occur at low levels and seem to originate through modifications of preexisting polypeptides. In contrast to 69 and 66 kDa proteins, most proteins detected by [14C]amino acid incorporation and fluorography of gels were not revealed by Coomassie blue staining.  相似文献   

15.
Cell wall components such as pectin and hemicelluloses have been proposed to be involved in aluminum resistance mechanisms in plants. However, whether hydroxyproline-rich glycoproteins (HRGPs), one of the most abundant proteins of the cell walls, are involved in Al resistance mechanisms remains elusive. In this study, two rice cultivars Xiushui 03 (Al resistant) and Xiushui 128 (Al sensitive) significantly differing in Al resistance were identified. In the absence of Al, no significant difference was observed in contents of glycoproteins and hydroxyproline in cell wall fractions of these two cultivars. At the early stage of Al toxicity, glycoproteins and hydroxyproline were significantly induced in these two cultivars, but levels of their accumulation in cell walls were much higher in cv. Xiushui 03 than in cv. Xiushui 128. At the late stage of Al toxicity, their accumulation in cell walls dramatically decreased in cv. Xiushui 128 and, however, still kept a high level in cv. Xiushui 03. The finding that Al-induced changes of glycoproteins and hydroxyproline were completely consistent indicates that Al-induced glycoproteins are HRGPs. Further observation utilizing transmission electron microscope showed that HRGPs were greatly accumulated in cell walls leading to thickening of cell walls in cv. Xiushui 03, however, HRGPs and cell walls greatly decreased in cv. Xiushui 128. These data suggest that Al-induced HRGP accumulation in cell walls is involved in alleviating Al toxicity in rice.  相似文献   

16.
M. Knee 《Phytochemistry》1973,12(3):637-653
A proportion of the polysaccharides and glycoproteins of apple fruit cell walls can be readily extracted in neutral buffer at or below 20°. Removal of more material was not achieved with a wide range of dissociative aqueous reagents or non-aqueous solvents. Thus traditional degradative extractants were used to obtain soluble components for further characterization. Polysaccharides and glycoproteins were separated and purified by chromatography on DEAE-cellulose columns and by gel filtration. Purified components were hydrolysed and analysed for neutral sugar and uronic acid content and for their amino acid and hydroxyproline content. The possibility of linkages existing in the cell wall between polyuronide and glycoproteins containing hydroxyproline, arabinose and galactose residues is discussed. Because of aggregation between these components, which occurs after extraction, the presence of such linkages in vivo is difficult to establish. Other cell wall glycoproteins containing xylose and glucose residues are thought to have a possible role in stabilizing hemicellulose structure.  相似文献   

17.
Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes.  相似文献   

18.
《Insect Biochemistry》1988,18(4):337-345
20-Hydroxyecdysone (20-HOE) induces evagination of imaginal discs of Drosophila and aggregation in certain Drosophila cell lines. During both evagination and aggregation extensive changes in cell surface proteins occur. Immunological cross-reactivity has been demonstrated between certain hormone-dependent cell surface proteins in discs and cell lines, although apparently identical proteins are more easily solubilized in cell lines than in imaginal discs. These and other observations suggest that in imaginal discs some of these proteins might be basal lamina or extracellular matrix components. Therefore we have investigated the possbility that in the hormone-responsive cell line S3, certain proteins metabolically labeled in a hormone-dependent fashion might be released into the medium. Our results demonstrate for the first time that Drosophila tissue culture cells produce an array of extracellular glycoproteins, and that the metabolic labeling of several of these glycoproteins is increased substantially by 20-HOE. The presence of these labeled glycoproteins in the medium is decreased reversibly by the ionophore monensin, suggesting that this is a Golgi-mediated process. Several hormone-dependent extracellular glycoproteins are immunoprecipitated by an antiserum raised against imaginal disc cell membranes. During hormone-dependent reaggregation of S3 cells, the appearance of several hormone-dependent glycoproteins in the medium coincides with the onset and continuation of reaggregation. We suggest that these glycoproteins may function in hormone-induced cell-cell interactions during S3 cell aggregation. We also hypothesize that these hormone-dependent glycoproteins may function during in vivo morphogenesis as basal lamina and/or extracellular matrix components.  相似文献   

19.
The annual developmental cycle of tuberous roots of Ranunculus asiaticus was studied with respect to structure and content of their cells, to understand how these roots are adapted to desiccation, high temperature and rehydration. Light microscopy, histochemical analysis, and protein analyses by SDS-PAGE were employed at eight stages of annual root development. During growth and maturation of the roots, cortical cells increased in size and their cell walls accumulated pectin materials in a distinct layer to the inside of the primary walls, with pits between adjoining cells. The number of starch granules and protein bodies also increased within the cells. Several discrete proteins accumulated. Following quiescence and rehydration of the roots there was a loss of starch and proteins from the cells, and cell walls decreased in thickness. The resurrection geophyte R. asiaticus possesses desiccation-tolerant annual roots. They store carbon and nitrogen reserves within their cells, and pectin within the walls to support growth of the plant following summer quiescence and rehydration.  相似文献   

20.
The ion-exchange properties of cell wall polymers isolated from the roots of wheat (Triticum aestivum L.) plants grown on either nitrate-free (N-deficient) or nitrate-containing (+N) hydroponic nutrient medium have been investigated. Irrespective of the nitrogen nutrition regimen, the studied cell walls contained four types of ion-exchange groups: primary amino groups of structural proteins (pKa < 3), carboxyl groups of polygalacturonic acid in pectin (pK a ~4.7), carboxyl groups of hydroxycinnamic acids (pK a ~7.3), and phenolic OH-groups of lignin (pKa ~10.2). The quantitative ratio between these types of ion-exchange groups, the mass fraction of cell walls in the dry weight of roots, and the swelling coefficient of cell walls depended on the nitrate presence in the growing medium. Compared to the +N variant, the N-deficient variant was characterized by a 2.4 times higher content of phenolic OH-groups in cell walls and 1.24 times higher mass fraction of cell walls; at the same time, the swelling coefficient for this variant was lower by 10%. The obtained data indicate that nitrogen deficiency results in a formation of thicker root cell walls with a higher degree of polymer cross-linking that may be caused by the increased lignin content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号