首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

2.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

3.
Changes in the metabolism of 1-aminocyclopropane-l-carboxylicacid (ACC) during senescence in the light in turgid, water-stressed,and ABA-treated, excised rice leaves were examined. The decreasesin levels of Chl and protein were more rapid in the water-stressedand in the ABA-treated leaves than in the turgid leaves. Inturgid leaves, levels of proline remained very low, but theyincreased considerably as a result of water stress or treatmentwith ABA. The production of ethylene was strongly inhibitedby water stress and by ABA through the inhibition of the synthesisof ACC and/or the conversion of ACC to ethylene. In turgid leaves,the level of 1-(malonylamino)cyclopropane-l-carboxylic acid(MACC) increased with time during incubation in the light. Waterstress resulted in a pattern of accumulation of MACC similarto that in the turgid control. However, ABA blocked the malonylationof ACC. (Received July 27, 1989; Accepted March 12, 1990)  相似文献   

4.
春小麦水分胁迫响应中的ACC、MACC合成及乙烯的释放   总被引:4,自引:0,他引:4  
水分胁迫使两个抗旱性不同的春小麦 (TriticumaestivumL .)品种“8139”(抗旱性较弱 )和“5 0 4”(抗旱性较强 )叶片ACC和MACC含量于胁迫初期下降后期升高 ,ACC合酶活性持续升高 ,乙烯释放量在 8139中下降而在5 0 4中先大幅升高而后下降。两种作用效果相反的抑制剂MGBG (抑制SAMDC活性 )和AOA (抑制ACC合酶活性 )均明显影响了两品种春小麦叶片以上各指标的变化。结果表明 ,水分胁迫下作物乙烯的释放量并不与其合成直接前体ACC的量成正相关 ;胁迫乙烯在抗性品种中于胁迫初期的升高可能是植物胁迫信号传导的响应之一 ,是一种干旱适应现象 ,可能与作物的干旱忍耐形成有关 ,而MACC具有调节胁迫乙烯释放的特殊生理作用。  相似文献   

5.
During the hypersensitive reaction of Samsun NN tobacco to tobacco mosaic virus (TMV) the inoculated leaves synthesize large quantities of ethylene. At the same time, 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) accumulates. Smaller amounts of MACC are formed concomitant with ethylene synthesis during the normal development of tobacco leaves. The conjugate appears neither to be hydrolysed to liberate ACC, nor to be transported to other plant parts. Its accumulation thus reflects the history of the operation of the pathway of ethylene synthesis in the leaf. In floating leaf discs exogenously applied ACC was converted only slowly to both ethylene and MACC. More ethylene and less MACC were produced in darkness than in light, suggesting that environmental conditions may influence the ratio at which ACC in converted to either ethylene or MACC.  相似文献   

6.
When wheat seedlings were subjected to waterlogging, 1-aminocyelopropane-l-carboxylic acid (ACC), an ethylene precursor, accumulated in large quantity in roots. In shoots, ACC and ethylene production also increased, but declined with the prolonged periods of waterlogging. However, ACC content in roots maintained in high level during the whole period of waterlogging. Drainage caused a drastic drop in both ACC content and ethylene production in waterlogged plants to control level. 1-(malonylamino) cyclopropane-l-carboxylic acid (MACC) level in roots subjected to waterlogging showed little changes. However, MACC content in shoots kept increasing during the 9-days period of waterlogging. At later period of waterlogging (longer than 5 days) when ACC and ethylene production bad dropped, the. level of MACC continued to increase. Draining stopped this increasing, but did not reduced its level. When exogenous ACC was introduced into the leaves via transpiration stream, the ability of leaves of waterlogged plant to convert ACC to MACC was much higher than control. The data presented showed that at the later stage of waterlogging, the conversien of a great quantity of ACC to MACC in waterlogged wheat plants is the cause of the reduction of ethylene production and ACC content. It was suggested that the formation of MACC is another way of regulation in ethylene biosynthesis. Among leaves of different ages, the enhancement of ethylene, ACC and MACC content was more pronounced in older leaves than in younger laves during the waterlogging period. The physiological significance of adaptation to waterlogging stress was discussed.  相似文献   

7.
Since the discovery of1-(malonylamino)cyclopropane-1-carboxylic acid (MACC)as a major metabolite of both endogenous andexogenously applied 1-aminocyclopropane-1-carboxylicacid (ACC), it has become evident that the formationof MACC from ACC can act to regulate ethyleneproduction in certain tissues. Hence it was suggestedthat MACC could serve as an indicator of water-stresshistory in plant tissues. The accurate quantificationof MACC in plant tissues is essential forunderstanding the role of MACC in the regulation ofethylene biosynthesis.Hoffman et al. [15] described a method for themeasurement of MACC in which MACC was hydrolysed byHCl to ACC, which was then assayed by chemicaloxidation to form ethylene. Attempts have been made byothers to raise monoclonal antibodies to MACC so thatan immunoassay could be developed in order to gain adeeper understanding of stress-induced ethyleneproduction but no further publications have beenforthcoming.Here a method employing GC-MS is compared with theindirect assay for MACC, which is based uponhydrolysis of MACC to ACC and conversion of ACC byhypochlorite reagent to ethylene which is subsequentlyquantified by GC.  相似文献   

8.
To study the cause of the uneven production of ethylene by upper and basal portions of detached petals of carnation ( Dianthus caryophyllus L. cv. White Sim), the petals were divided and exposed to ethylene (30 μl 1-1 for 16 h). The treatment induced rapid wilting and autocatalytic ethylene production in the basal portion similar to that induced in entire petals. In contrast to the response in entire petals and the basal portions, the upper portions responded to ethylene by delayed wilting and much lower ethylene production. Aminocyclopropane carboxylic acid (ACC)-synthase activity in the basal portion of the petals was 38 to 400 times that in the upper portion. In untreated detached petal pieces from senescing carnation flowers, ethylene production by the upper portion declined after 6 h while the basal portion was still producing ethylene at a steady rate 18 h later. Application of ACC to the upper portion of senescing petals increased their ethylene production. α-Aminooxyacetic acid (0.5 m M ), reduced the ethylene production of the senescing basal portion more than that of the upper portion. Endogenous ACC content in basal portions of senescing carnation petals was 3 to 4 times higher than in the upper parts. When detached senescing petals were divided immediately after detaching, the endogenous ACC levels in upper portions remained steady or declined during 24 h after division, while in the basal portions the ACC level rose steadily as in the intact petals. There was no change in the conjugated ACC in either portion after 24 h. Benzyladenine (BA) applied as a pretreatment to entire preclimacteric petals greatly reduced the development of ACC-synthase activity of the basal portion, but had little effect on the activity in the upper portion of the petal. In both portions, however, BA effectively reduced the conversion of ACC to ethylene.  相似文献   

9.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

10.
Normal senescence of Petunia hybrida L. (cv. Pink Cascade) was associated with a 10-fold increase in their ethylene production. Soon after pollination wounding of the stigma of detached flowers there was a burst of ethylene production by the gynoecium, which reached a maximum after 3 h. A subsequnt more gradual rise in ethylene production by the flowers was accompanied by blueing, wilting, and senescence of the corolla. Treatment with 1 μl ethylene 1−1 accelerated the onset of senescence as measured first by color change and then by wilting of the corolla. These changes were further accelerated by using older flowers or higher concentrations of ethylene. Senescence was also hastened by supplying 1-aminocyclopropane-1-carboxylic acid (ACC) through the flower pedicel. Petunia pollen contained high concentrations of ACC (300 nmol g−1); treatment of stigmas with ACC (1 m M ) caused a 4-fold increase in their ethylene production. Senescence, whether natural or hastened by pollination or piercing, was delayed by treating the flowers with the anionic silver thiosulfate complex.  相似文献   

11.
The effects of ethylene (C2H4), (2-chloroethyl)phosphonic acid (ethefon) and 1-aminocyclopropane-1-carboxylic acid (ACC) on senescence of isolated intact petals and of upper petal parts of carnation flowers ( Dianthus caryophyllus L. cv. White Sim) were investigated.
Isolated upper petal parts did not respond to treatment with ethefon or ACC. These tissues did, however, show severe wilting in intact petals that were treated with ethefon or ACC. When isolated upper petal parts were simultaneously treated with ACC and ethefon or ACC and ethylene, a marked synergistic effect on senescence was found. Treatment of isolated petals with radiolabeled ACC led to the accumulation of radiolabeled ACC and N-malonyl-ACC (MACC) in the upper parts. The formation of ethylene and the malonylation of ACC were inhibited by pretreatment of the flower with the inhibitor of ethylene action, silver thiosulphate (STS), which indicates that both were induced by endogenously produced ethylene. Treatment of isolated upper parts with ACC slightly increased their ethylene production. However, when these petal parts were simultaneously treated with ethylene and ACC, the conversion of ACC to ethylene was markedly stimulated.
The results indicate that, in intact petals, ethylene may be translocated from the basal to the upper part where it stimulates the activity of the ethylene-forming enzyme (EFE), thereby making the tissue receptive to ACC.
In addition, it was found that upon incubation of petal portions in radiolabeled ACC, both the petal tissue and the incubation solutions produced radiolabeled carbon dioxide. This was shown to be due to microorganisms that were able to metabolize the carbon atoms in the 2 and 3 position of ACC into carbon dioxide.  相似文献   

12.
Ethylene production in developing cocklebur (Xanthium pennsyluanicumWallr.) seeds peaked when the dry weight of the seeds beganto increase in the early period of development. The productionthen began to decrease and stopped when the dry weight increasewas completed. The upsurge of ethylene production in the earlydevelopmental period paralleled increases in ACC synthase activityand the 1-aminocyclopropane-1-carboxylic acid (ACC) contentof the seeds, both of which rapidly decreased later. Malonyl-ACC (MACC) accumulated in developing cocklebur seedsduring the early period of development, before the ACC contentand ethylene production increased. Although the ACC synthaseactivity, ACC content and ethylene production showed markeddecreases, the MACC content remained almost unchanged duringthe middle period of seed development, with a pronounced decreaseoccurring in the late period. Exogenous application of MACCdid not promote ethylene production of seeds collected at thelate developmental stage. Aminoethoxyvinylglycine, an inhibitorof ACC synthase, strongly inhibited the ethylene productionof the same lot of seeds. Therefore, the decrease in the MACCcontent in developing cocklebur seeds was not due to reuse ofMACC for ethylene production. (Received May 24, 1984; Accepted August 15, 1984)  相似文献   

13.
Peak levels of 1-aminocyclopropane-l-carboxylic acid (ACC) in flower parts of ageing carnations (Dianthus caryophyllus L. cv Scanea 3C) were detected 6 to 9 days after flower opening. The ethylene climacteric and the first visible sign of wilting was observed 7 days after opening. The concentration of conjugated ACC in these same tissues peaked at day three with reduction of 70% by day 4. From day 5 to day 9 all parts followed a diurnal pattern of increasing in conjugate levels 1 day and decreasing the next. Concentrations of conjugated ACC were significantly higher than those of ACC in all ageing parts. Preclimacteric petals treated with ACC or 1-(malonylamino)-cycloprane-1-carboxylic acid (MACC), started to senesce 30 to 36 hours after treatment. When petals were treated with MACC plus by 0.1 millimolar aminoethyoxyvinylglycine, premature senescence was induced, while ethylene production was suppressed relative to MACC-treated petals. Petals treated with MACC and silver complex produced ethylene, but did not senesce. The MACC-induced ethylene was inhibited by the addition of 1.0 millimolar CoC12. These results demonstrate MACC-induced senescence in preclimacteric petals. The patterns of ACC and MACC detected in the flower parts support the view that an individual part probably does not export an ethylene precursor to the remainder of the flower inducing senescence.  相似文献   

14.
A method for the quantitation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugated form of 1-aminocyclopropane-1-carboxylic acid (ACC), in plants is described. [2,2,3,3-2H4]MACC has been used as an internal standard for selected ion monitoring/isotope dilution quantitation of MACC in wheat seedlings and in tomato leaves. This method is compared with a widely-used two step indirect assay for MACC, which is based upon hydrolysis of MACC to ACC and conversion of ACC by hypochlorite reagent to ethylene which is subsequently quantified by gas chromatography.  相似文献   

15.
Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity.  相似文献   

16.
17.
Jiao XZ  Yip WK  Yang SF 《Plant physiology》1987,85(3):643-647
While light-grown wheat leaves produced ethylene at a low rate of <0.1 nanomoles per gram per hour and contained 1-aminocyclopropane-1-carboxylic acid (ACC) at low levels of <2.5 nanomoles per gram, etiolated wheat leaves produced ethylene at a rate of 2 nanomoles per gram per hour and accumulated concentrations of ACC at levels of 40 nanomoles per gram. Upon illumination of 8-day-old etiolated wheat seedlings with white light, the ethylene production rate increased initially, due to the activation of ethylene-forming activity, but subsequently declined to a low level (0.1 nanomoles per gram per hour) at the end of the 6-hour illumination. This light-induced decline in ethylene production rate resulted from a decline (more than 35 nanomoles per gram) in ACC level, which was accompanied by a corresponding increase in 1-(malonylamino)cyclopropane-1-carboxylic acid content. These data indicate that illumination promoted ACC malonylation, resulting in reduced ACC level and consequently reduced ethylene production. However, light did not cause any significant increase in the extractable ACC-malonyltransferase activity. The effect of continuous white light on promotion of ACC malonylation was also observed in intermittent white light or red light. A far-red light treatment following red light partially reversed the red light effect, indicating that phytochrome participates in the promotion of ACC malonylation.  相似文献   

18.
Leaves of soybean ( Glyxine max. L., var. Progress) were subjected to desiccation, which brought about varying degree of membrane damage as checked with the conductivity method. Progress of injury up to 30% was associated with promotion of ethylene synthesis and with accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) and 1-(malonylamino)cyclopropane-l-carboxylic acid (MACC) in the cells, as well as with activation of lipoxygenase, the enzyme which is involved in lipid peroxidation and which is capable of forming activated oxygen. The stress-induced promotion of ethylene synthesis was inhibited by the ACC synthase inhibitor aminooxyacetate (AOA). as well as by n-propyl gallate (PG), a free radical scavenger and inhibitor of lipoxygenase. Pretreatment of non-stressed soybean leaves with different concentrations of PG also resulted in the corresponding inhibition of lipoxygenase activity and ethylene formation, the former effect being less pronounced than the latter one. In the tissues pretreated with propyl gallate, the ACC level was not affected, whereas the MACC substantially increased. In leaves showing 40% membrane damage neither lipoxygenase activity nor ethylene synthesis increased any further, despite a further increase in the ACC and MACC levels. Therefore, we propose that there are two prerequisites for effective in vivo synthesis of stress ethylene: promotion of ACC synthesis and activation of a free radical-generating system, which is responsible for the non-enzymatic conversion of ACC to ethylene. The latter effect seems to be due to the activation of the membrane-associated lipoxygenase, which depends on stress-induced alterations in membrane properties.  相似文献   

19.
Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the capability of watercress (Nasturtium officinale R. Br) stem sections and tobacco (Nicotiana tabacum L.) leaf discs to convert exogenously applied MACC to ACC increased with increasing MACC concentrations (0.2-5 millimolar) and duration (4-48 hours) of the treatment. The MACC-induced ethylene production was inhibited by CoCl2 but not by aminoethoxyvinylglycin, suggesting that the ACC formed is derived from the MACC applied, and not from the methionine pathway. This was further confirmed by the observation that radioactive MACC released radioactive ACC and ethylene. A cell-free extract, which catalyzes the conversion of MACC to ACC, was prepared from watercress stems which were preincubated with 1 millimolar MACC for 24 hours. Neither fresh tissues nor aged tissues incubated without external MACC exhibited enzymic activity, confirming the view that the enzyme is induced by MACC. The enzyme had a Km of 0.45 millimolar for MACC and showed maximal activity at pH 8.0 in the presence of 1 millimolar MnSO4. The present study indicates that high MACC levels in the plant tissue can induce to some extent the capability to convert MACC to ACC.  相似文献   

20.
Potato ( Solanum tuberosum L. cv. Katahdin) disks produce ethyline in increasing amounts from 6 to 24 h incubation in buffer at pH 4.0. Ethylene production is increased 2–3 times in the presence of 50 m M CaCl2. Levels of endogenous 1-amino-cyclopropane-1-carboxylic acid (ACC) increase in parallel with ethylene production, and ACC levels are 3–5 times higher in calcium-treated disks than in controls. Most of the calcium-induced stimulation of ethylene production can be accounted for by its effect on ACC production, indicating that the primary effect of calcium is on a step of ethylene biosynthesis preceeding ACC production. However, calcium may also have an effect on conversion of ACC to ethylene, since a consistent increase in ACC-de-pendent ethylene production was observed in the presence of calcium. Production of ethane, a marker of lipid peroxidation, was reduced by calcium, so it is possible that membrane stabilization by calcium could be involved in its effects on ethylene production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号