共查询到20条相似文献,搜索用时 0 毫秒
1.
The phototropic and polarotropic responses of primary chloronemata grown from germinated minated spores of three mutant strains of the moss, Physcomitrella patens, have been studied and compared with those of the wild-type. The mutants and wild-type show the same qualitative tropic responses but differ with respect to the light conditions under which they are expressed. In both the wild-type and mutants the responses are controlled by phytochrome. In monochromatic red light, at low fluence rates, wild-type primary chloronemata grow positively phototropically in unidirectional light or perpendicular to the electrical vector (E) in polarised light; at high fluence rates growth in unidirectional light is lateral to the incident light or, in polarised light, parallel to E. The mutants, however, show only the lateral phototropic or parallel polarotropic responses at all fluence rates of red light tested. In far-red light, the wild-type primary chloronemata adopt a positive phototropic or a perpendicular polarotropic response; the mutants show the same responses but in a lower percentage of filaments. These results and those at other wavelengths indicate either that the mutants are impaired in their ability to adopt the positive phototropic and perpendicular polarotropic responses or that in the mutants the transition between the “low light” (positive phototropic-perpendicular polarotropic) and the “high light” (lateral phototropic-parallel polarotropic) responses is shifted to a lower photon fluence rate. Possible explanations of this phenotypic difference are discussed. 相似文献
2.
Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella patens 总被引:1,自引:2,他引:1
The gravitropic responses of dark-grown caulonemata and gametophores of wild-type and mutant strains of the moss Physcomitrella patens have been investigated. In the wild-type both caulonemata and gametophores show negative orthogravitropism. No gravitropic response is observed when plants are rotated slowly on a clinostat and the inductive effect of gravity can be replaced by centrifugal force. The gravitropic response of caulonemanta is biphasic, consisting of an initial phase producing a bend of about 20 degrees within 12 h of 90 degrees reorientation and a subsequent slower phase leading to completion of the 90 degrees curvature. No obvious sedimentation of statoliths accompanies this response. Several mutants have been isolated that are either partially or completely impaired in caulonemal gravitropism and one mutant shows a positive gravitropic response. Complementation analysis using somatic hybrids obtained following protoplast fusion indicates that at least three genes can mutate to give an altered gravitropic phenotype. None of these mutants is altered in gametophore gravitropism, suggesting that the gravitropic response of caulonemal filaments may require at least some gene products that are not required for the response of the multicellular gametophores. One class of mutant with impaired caulonemal gravitropism shows a pleiotropic alteration in leaf shape. 相似文献
3.
Induction of budding on chloronemata and caulonemata of the moss,Physcomitrella patens,using isopentenyladenine 总被引:4,自引:0,他引:4
The bud-inducing effect of the cytokinin N6-(2-isopentenyl)-adenine (i6-Ade) was examined in the moss Physcomitrella patens growing in liquid culture. Under these conditions, buds could be induced on chloronemata as well as on caulonemata. By application of i6-Ade, bud-formation was accelerated in both types of tissue. The number of buds, their size and their site of development were dependent on the concentration of the cytokinin in the range of 10-7 M to 10-5 M. Moreover, the percentage of caulonema cells increased with a cytokinin concentration of 10-5 M. These results indicate that chloronema cells may also function as target cells for exogenous cytokinins. The composition of proteins from caulonemata and chloronemata of two different species (P. patens and Funaria hygrometrica), grown on solid medium were compared. No differences could be detected between the protein patterns of caulonemata and chloronemata of the same species while between the two species the differences were obvious.Abbreviations i6-Ade
N6-(2-isopentenyladenine)
- Da
dalton
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 相似文献
4.
Arazi T 《Plant molecular biology》2012,80(1):55-65
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter??s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens. 相似文献
5.
Stable transformation of the moss Physcomitrella patens 总被引:9,自引:0,他引:9
D. Schaefer J. -P. Zryd C. D. Knight D. J. Cove 《Molecular & general genetics : MGG》1991,226(3):418-424
Summary We report the stable transformation of Physcomitrella patens to either G418 or hygromycin B resistance following polyethylene glycol-mediated direct DNA uptake by protoplasts. The method described in this paper was used successfully in independent experiments carried out in our two laboratories. Transformation was assessed by the following criteria: selection of antibiotic-resistant plants, mitotic and meiotic stability of phenotypes after removal of selective pressure and stable transmission of the character to the offspring; Southern hybridisation analysis of genomic DNA to show integration of the plasmid DNA; segregation of the resistance gene following crosses with antibiotic-sensitive strains; and finally Southern hybridisation analysis of both resistant and sensitive progeny. In addition to stable transformants, a heterogeneous class of unstable transformants was obtained. 相似文献
6.
The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from related genes. However, RNA interference (RNAi) can provide mutants for both of these situations. We show that RNAi disrupts gene expression in P. patens, adding a significant tool for the study of plant gene function. To assay for RNAi in moss, we constructed a line (NLS-4) expressing a nuclearly localized green fluorescent protein (GFP):beta-glucuronidase (GUS) fusion reporter protein. We targeted the reporter protein with two RNAi constructs, GUS-RNAi and GFP-RNAi, expressed transiently by particle bombardment. Transformed protonemal cells are marked by cobombardment with dsRed2, which diffuses between the nucleus and cytoplasm. Cells transformed with control constructs have nuclear/cytoplasmic red fluorescence and nuclear green fluorescence. In cells transformed with GUS-RNAi or GFP-RNAi constructs, the nuclear green fluorescence was reduced on average 9-fold as soon as 48 h after transformation. Moreover, isolated lines of NLS-4 stably transformed with GUS-RNAi construct have silenced nuclear GFP, indicating that RNAi is propagated stably. Thus, RNAi adds a powerful tool for functional analysis of plant genes in moss. 相似文献
7.
Skripnikov AIu Anikanov NA Kazakov VS Dolgov SV Ziganshin RKh Govorun VM Ivanov VT 《Bioorganicheskaia khimiia》2011,37(1):108-118
In the current study the isolation and identification of Physcomitrella patens (Hedw.) B.S.G. moss peptides are described. Physcomitrella patens moss is actively used in recent years as a model organism to study the biology of plants. Protoplasts, protonemata and gametophores of the moss are demonstrated for the first time to contain diverse small peptides. From gametophores was isolated and identified 58 peptides that are fragments of 14 proteins, and from protonemata - 49 peptides, fragments of 15 proteins. It was found that the protonemata and gametophores Ph. patens, which are the successive stages of development of this plant, significantly different from each other as a peptide composition and the spectrum of the precursor protein of identified peptides. Isolation of protoplasts of the enzymatic destruction of cell wall protonemata accompanied by massive degradation of intracellular proteins, many of whom are proteins of photosynthesis, which is a characteristic response of plants to stress the impact of environmental factors. A total of moss protoplasts were isolated and identified 323 peptides that are fragments of 79 proteins. 相似文献
8.
Boyd Philip J. Grimsley Nigel H. Cove David J. 《Molecular genetics and genomics : MGG》1988,211(3):545-546
Molecular Genetics and Genomics - Spores have been preferred for mutagenic treatment of Physcomitrella patens. Many mutant strains are, however, sexually sterile and so do not produce spores. We... 相似文献
9.
Efficient gene targeting in the moss Physcomitrella patens 总被引:16,自引:2,他引:16
Didier G. Schaefer Jean-Pierre Zrÿd 《The Plant journal : for cell and molecular biology》1997,11(6):1195-1206
The moss Physcomitrella patens is used as a genetic model system to study plant development, taking advantage of the fact that the haploid gametophyte dominates in its life cycle. Transformation experiments designed to target three single-copy genomic loci were performed to determine the efficiency of gene targeting in this plant. Mean transformation rates were 10-fold higher with the targeting vectors and molecular evidence for the integration of exogenous DNA into each targeted locus by homologous recombination is provided. The efficiency of gene targeting determined in these experiments is above 90%, which is in the range of that observed in yeast and several orders of magnitude higher than previous reports of gene targeting in plants. Thus, gene knock-out and allele replacement approaches are directly accessible to study plant development in the moss Physcomitrella patens . Moreover, efficient gene targeting has so far only been observed in lower eukaryotes such as protozoa, yeasts and filamentous fungi, and, as shown here the first example from the plant kingdom is a haplobiontic moss. This suggests a possible correlation between efficient gene targeting and haplo-phase in eukaryotes. 相似文献
10.
Transfer RNA metabolism in developmentally-abnormal ove strains of Physcomitrella patens (Hedw.) Br. Eur. which produce more than 100 times the wild-type level of cytokinin, was analysed. tRNA from ove and wild-type strains of P. patens was extracted and characterised and tRNA metabolism in these strains was compared. No differences large enough to account for the observed levels of cytokinin production by ove strains were found. The amount of cellular tRNA and the rate of cytokinin degradation were similar in ove and wild-type strains suggesting that the cause of over-production in the mutants may be due to changed control of a biosynthetic route independent of tRNA. 相似文献
11.
12.
13.
14.
Stumpe M Bode J Göbel C Wichard T Schaaf A Frank W Frank M Reski R Pohnert G Feussner I 《Biochimica et biophysica acta》2006,1761(3):301-312
After wounding, the moss Physcomitrella patens emits fatty acid derived volatiles like octenal, octenols and (2E)-nonenal. Flowering plants produce nonenal from C18-fatty acids via lipoxygenase and hydroperoxide lyase reactions, but the moss exploits the C20 precursor arachidonic acid for the formation of these oxylipins. We describe the isolation of the first cDNA (PpHPL) encoding a hydroperoxide lyase from a lower eukaryotic organism. The physiological pathway allocation and characterization of a downstream enal-isomerase gives a new picture for the formation of fatty acid derived volatiles from lower plants. Expression of a fusion protein with a yellow fluorescent protein in moss protoplasts showed that PpHPL was found in clusters in membranes of plastids. PpHPL can be classified as an unspecific hydroperoxide lyase having a substrate preference for 9-hydroperoxides of C18-fatty acids but also the predominant substrate 12-hydroperoxy arachidonic acid is accepted. Feeding experiments using arachidonic acid show an increase in the 12-hydroperoxide being metabolized to C8-aldehydes/alcohols and (3Z)-nonenal, which is rapidly isomerized to (2E)-nonenal. PpHPL knock out lines failed to emit (2E)-nonenal while formation of C8-volatiles was not affected indicating that in contrast to flowering plants, PpHPL is only involved in formation of a specific subset of volatiles. 相似文献
15.
Yuji Hiwatashi Tomoaki Nishiyama Tomomichi Fujita Mitsuyasu Hasebe 《The Plant journal : for cell and molecular biology》2001,28(1):105-116
Because of its simple body plan and ease of gene knockout and allele replacement, the moss Physcomitrella patens is often used as a model system for studies in plant physiology and developmental biology. Gene-trap and enhancer-trap systems are useful techniques for cloning genes and enhancers that function in specific tissues or cells. Additionally, these systems are convenient for obtaining molecular markers specific for certain developmental processes. Elements for gene-trap and enhancer-trap systems were constructed using the uidA reporter gene with either a splice acceptor or a minimal promoter. Through a high rate of transformation conferred by a method utilizing homologous recombination, 235 gene-trap and 1073 enhancer-trap lines were obtained from 5637 and 3726 transgenic lines, respectively. The expression patterns of these trap lines in the moss gametophyte varied. The candidate gene trapped in a gene-trap line YH209, which shows rhizoid-specific expression, was obtained by 5' and 3' RACE. This gene was named PpGLU, and forms a clade with plant acidic alpha-glucosidase genes. Thus, these gene-trap and enhancer-trap systems should prove useful to identify tissue- and cell-specific genes in Physcomitrella. 相似文献
16.
Repp A Mikami K Mittmann F Hartmann E 《The Plant journal : for cell and molecular biology》2004,40(2):250-259
The phosphoinositide signalling pathway is important in plant responses to extracellular and intracellular signals. To elucidate the physiological functions of phosphoinositide-specific phopspholipase C, PI-PLC, targeted knockout mutants of PpPLC1, a gene encoding a PI-PLC from the moss Physcomitrella patens, were generated via homologous recombination. Protonemal filaments of the plc1 lines show a dramatic reduction in gametophore formation relative to wild type: this was accompanied by a loss of sensitivity to cytokinin. Moreover, plc1 appeared paler than the wild type, the result of an altered differentiation of chloroplasts and reduced chlorophyll levels compared with wild type filaments. In addition, the protonemal filaments of plc1 have a strongly reduced ability to grow negatively gravitropically in the dark. These effects imply a significant role for PpPLC1 in cytokinin signalling and gravitropism. 相似文献
17.
18.
Preparing high-quality DNA from moss (Physcomitrella patens) 总被引:1,自引:0,他引:1
Physcomitrella patens, a moss, is the only land plant that performs high rates of homologous recombination, making it a valuable tool for functional
genomics. Unfortunately, commercially available plant DNA preparation kits are ineffective withPhyscomitrella. Furthermore, labor-intensive CTAB preparations produce low yields, and the DNA is degraded and contaminated. We present
a protocol that is faster and doubles the DNA yield obtained from standard procedures. The high-quality DNA prepared is suitable
for PCR reactions and Southern blot analysis. 相似文献
19.
Branch position in the moss Physcomitrella patens is regulated by blue light. In this study, fluence rate dependency of branch position determination was investigated by partial cell irradiation with a microbeam. With a 30 Wm(-2) or lower fluence rate, branches formed at the microbeam area, but formed outside the microbeam when the fluence rate was raised to > or = 200 Wm(-2). Thus, both weak and strong light responses influence the determination of branch position. Further, light sensitivity of both responses was reduced in phototropin knock-out lines, revealing an involvement of phototropin as the blue light receptor. 相似文献
20.
The serine/threonine protein kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a highly conserved eukaryotic kinase that is a central regulator of many AGC kinase subfamily members. Through its regulation of AGC kinases, PDK1 controls many basic cellular processes, from translation to cell survival. While many of these PDK1-regulated processes are conserved across kingdoms, it is not well understood how PDK1 may have evolved within kingdoms. In order to better understand PDK1 evolution within plants, we have isolated and characterized the PDK1 gene from the moss Physcomitrella patens (PpPDK1), a nonvascular representative of early land plants. PpPDK1 is similar to other plant PDK1s in that it can functionally complement a yeast PDK1 knockout line. However, unlike PDK1 from other plants, the P. patens PDK1 protein does not bind phospholipids due to a lack of the lipid-binding pleckstrin homology domain, which is used for lipid-mediated regulation of PDK1 activity. Sequence analysis of several PDK1 proteins suggests that lipid regulation of PDK1 may not commonly occur in algae and nonvascular land plants. PpPDK1 can phosphorylate AGC kinase substrates from tomato (Solanum lycopersicum) and P. patens at the predicted PDK1 phosphorylation site, indicating that the PpPDK1 substrate phosphorylation site is conserved with higher plants. We have also identified residues within the PpPDK1 kinase domain that affect kinase activity and show that a mutant with highly reduced kinase activity can still confer cell viability in both yeast and P. patens. These studies lay the foundation for further analysis of the evolution of PDK1 within plants. 相似文献