首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Reversible inhibition of Chlamydomonas flagellar surface motility   总被引:3,自引:2,他引:1       下载免费PDF全文
Chlamydomonas exhibits force transduction in association with its flagellar surface; this can be visualized by the saltatory movements of attached polystyrene microspheres. This flagellar surface motility has been quantitated by determining the percentage of attached microspheres in motion at the time of observation (60% in the case of control cells at 25 degrees C). A number of experimental treatments reversibly inhibit flagellar surface motility. These include an increase in sodium or potassium chloride concentration, a decrease in temperature, or a decrease in the free calcium concentration in the medium. Many of the conditions that result in inhibition of flagellar surface motility also result in an induction of flagellar resorption. Although both flagellar stability and flagellar surface motility are dependent on the availability of calcium, the two processes are separable; under appropriate conditions, flagellar surface motility can occur at normal levels on flagella that are resorbing. Inhibition of protein synthesis results in a gradual loss of both the binding of microspheres to the flagellum and the flagellar surface motility. After resumption of protein synthesis, both binding and movement return to control levels. The effect of the inhibition of protein synthesis is interpreted in terms of selective turnover of certain components within the intact flagellum, one or more of these components being necessary for the binding of the microspheres and their subsequent movement. If this turnover is inhibited by keeping the cells below 5 degrees C, the absence of protein synthesis no longer has an effect on microsphere attachment and motility, when measured immediately after warming the cells to 25 degrees C.  相似文献   

3.
The fine structure of the collenchyma cell wall   总被引:1,自引:0,他引:1  
S. C. Chafe 《Planta》1969,90(1):12-21
  相似文献   

4.
The Chlamydomonas cell wall: characterization of the wall framework   总被引:11,自引:5,他引:6       下载免费PDF全文
The cell wall of the biflagellate alga Chlamydomonas reinhardtii is a multilayered, extracellular matrix composed of carbohydrates and 20-25 polypeptides. To learn more about the forces responsible for the integrity of this cellulose-deficient cell wall, we have begun studies to identify and characterize the framework of the wall and to determine the effects of the cell wall-degrading enzyme, lysin, on framework structure and protein composition. In these studies we used walls released into the medium by mating gametes. When isolated shed walls are degraded by exogenously added lysin, no changes are detected in the charge or molecular weight of the 20-25 wall proteins and glycoproteins when analyzed on one- and two-dimensional polyacrylamide gels, which suggests that degradation of these shed walls is due either to cleavage of peptide bonds very near the ends of polypeptides or that degradation occurs via a mechanism other than proteolysis. Incubation of walls with Sarkosyl-urea solutions removes most of the proteins and yields thin structures that appear to be the frameworks of the walls. Analysis by polyacrylamide gel electrophoresis shows that the frameworks are highly enriched in a polypeptide of Mr 100,000. Treatment of frameworks with lysin leads to their degradation, which indicates that this part of the wall is a substrate for the enzyme. Although lysin converts the Mr 100,000 polypeptide from an insoluble to a soluble form, there is no detectable change in Mr of the framework protein. Solubilization in the absence of lysin requires treatment with SDS and dithiothreitol at 100 degrees C. These results suggest that the Chlamydomonas cell wall is composed of two separate domains: one containing approximately 20 proteins held together by noncovalent interactions and a second domain, containing only a few proteins, which constitutes the framework of the wall. The result that shed walls can be solubilized by boiling in SDS-dithiothreitol indicates that disulfide linkages are critical for wall integrity. Using an alternative method for isolating walls from mechanically disrupted gametes, we have also shown that a wall-shaped portion of these unshed walls is insoluble under the same conditions in which shed walls are soluble. One interpretation of these results is that wall release during mating and the wall degradation that follows may involve distinct biochemical events.  相似文献   

5.
Chlamydomonas lytic enzyme of the cell wall (gamete wall-autolysin) is responsible for shedding of cell walls during mating of opposite mating-type gametes. This paper reports some topographic aspects of lytic enzyme in cells. Both vegetative and gametic cells contain the same wall lytic enzyme. The purified enzyme is a glycoprotein with an apparent molecular mass of 67 kD by gel filtration and 62 kD by SDS PAGE, and is sensitive to metal ion chelators and SH-blocking agents. These properties are the same as those of the gamete wall-autolysin released into the medium by mating gametes. However, the storage form of the enzyme proves to be quite different between the two cell types. In vegetative cells, the lytic enzyme is found in an insoluble form in cell homogenates and activity is released into the soluble fraction only by sonicating the homogenates or freeze-thawing the cells, whereas gametes always yield lytic activity in the soluble fractions of cell homogenates. When vegetative cells are starved for nitrogen, the storage form of enzyme shifts from its vegetative state to gametic state in parallel with the acquisition of mating ability. Adding nitrogen to gametes converts it to the vegetative state concurrently with the loss of mating ability. We also show that protoplasts obtained by treatment of vegetative cells or gametes with exogenously added enzyme have little activity of enzyme in the cell homogenates, suggesting that lytic enzyme is stored outside the plasmalemma. When the de-walled gametes or gametes of the wall-deficient mutant, cw-15, of opposite mating types are mixed together, they mate normally but the release of lytic enzyme into the medium is practically negligible. When the de-walled vegetative cells are incubated, the lytic enzyme is again accumulated in the cells after the wall regeneration is almost complete.  相似文献   

6.
7.
Summary The protein composition of the flagellar membrane of C. eugametos mt gametes was analyzed using SDS-polyacrylamide gel electrophoresis. The association of the proteins with the membrane was assessed by differential extraction and an assay for glycosylation. Particular attention was paid to integral membrane proteins that could be associated with the mt agglutinin, the membrane-bound sexual receptor by which the mt gamete binds to its mt + partner. This agglutinin is a peripheral membrane glycoprotein and must be bound to the flagellar surface by an integral membrane anchor protein that connects the agglutinin with the cell's interior. Immunoaffinity chromatography was performed using Mab 66.3, a monoclonal antibody specific for the mt agglutinin, in order to isolate protein complexes consisting of agglutinin molecules and associated components. Only one integral membrane glycoprotein (Mr = 125 kDa) was isolated that has an association with the agglutinin. It did not bind Mab 66.3, but did bind the lectin wheat germ agglutinin. This was an expected property of the membrane anchor protein because previous research (Kooijman et al. 1989) has shown that cross-linking a WGA-binding glycoprotein by this lectin induces sexual responses that are similar to those induced by agglutinin-agglutinin interactions during mating. We conclude that the 125-kDa glycoprotein is the membrane anchor for the agglutinin.Abbreviations BSA Bovine serum albumin - CBB Coomassie Brilliant Blue - CHAPS 3-[(3-Cholamidopropyl)-dimethylammonio]-1-propanesulfonate - GTC guanidine thiocyanate - mt /mt + mating type minus/plus - PAS periodic acid Schiff - PBS phosphate buffered saline - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TBS TRIS-buffered saline - WGA wheat germ agglutinin  相似文献   

8.
Chlamydomonas sexual agglutinins have been quantitatively extracted from isolated flagella in vitro using the dialyzable nonionic detergent octyl-D-glucopyranoside and from cells in vivo with 12.5 mM EDTA. Both preparations elicit normal sexual responses from gametes of complementary, but not like, mating types. Extracts of vegetative cells and several agglutination-deficient (imp) mutants are totally inactive. Agglutinin activity is sensitive to trypsin, mild periodate oxidation, and heating at 60 degrees C for 1 min. These findings, coupled with the size of the molecule (it is excluded from Sepharose 6B and sediments as a 12 S particle in sucrose gradients) lead us to propose that the Chlamydomonas sexual agglutinins are large glycoproteins or glycoprotein aggregates which associate with the flagellar membrane in an extrinsic fashion. Partial purification of in vivo 125I-surface labeled EDTA extracts rules out several surface polypeptides, including the bulk of material migrating in the region of the major membrane glycoprotein (Mr 350,000), as agglutinin candidates and indicates that the active molecule is a minor component of the flagellar membrane. In addition, in vitro assays suggest a mechanism for in vivo sexual agglutination whereby stable adhesion is achieved by the active redistribution of agglutinins to the flagellar tips.  相似文献   

9.
A mutant strain of Chlamydomonas reinhardtii is shown to possess an oversized flagellar membrane protein. The mutant has paralyzed flagella, is temperature sensitive for flagellar assembly, and has an abnormal axonemal protein composition. All phenotypes appear to derive from a single Mendelian mutation, and genetic analysis suggests that the mutation, which call ts222, is in the gene pfl. Because pf1 mutants are known to have radial-spoke defects (Piperno et al., 1977, Proc. Natl. Acad. Sci. U. S. A. 74:1600-1604; and Witman et al., 1978, J. Cell Biol. 76:729-797), a relation as yet undefined appears to exist between radial-spoke and flagellar membrane biogenesis.  相似文献   

10.
To determine the ultrastructural and biochemical bases for flagellar adhesiveness in the mating reaction in Chlamydomonas, gametic and vegetative flagella and flagellar membranes were studied by use of electron microscope and electrophoretic procedures. Negative staining with uranyl acetate revealed no differences in gametic and vegetative flagellar surfaces; both had flagellar membranes, flagellar sheaths, and similar numbers and distributions of mastigonemes. Freezecleave procedures suggested that there may be a greater density of intramembranous particles on the B faces of gametic flagellar membranes than on the B faces of vegetative flagellar membranes. Gamone, the adhesive material that gametes release into their medium, was demonstrated, on the basis of ultrastructural and biochemical analyses, to be composed of flagellar surface components, i.e., membrane vesicles and mastigonemes. Comparison of vegetative (nonadhesive) and gametic (adhesive) "gamones" by use of SDS polyacrylamide gel electrophoresis showed both preparations to be composed of membrane, mastigoneme, and some microtubule proteins, as well as several unidentified protein and carbohydrate-staining components. However, there was an additional protein of approximately 70,000 mol wt in gametic gamone which was not present in vegetative gamone. When gametic gamone was separated into a membrane and a mastigoneme fraction on CSCl gradients, only the membrane fraction had isoagglutinating activity; the mastigoneme fraction was inactive, suggesting that mastigonemes are not involved in adhesion.  相似文献   

11.
12.
Several treatments were tested to extract the sexual binding site from membrane vesicles derived from the flagellar surface of Chlamydomonas eugametos. Extraction with detergents, chaotropic and hydrogen bond-disrupting agents, as well as sonication, was effective in reducing the isoagglutination activity of these membrane vesicles. Complementary with this reduction, a sex-specific biological activity related to isoagglutination, called twitch activity appeared in the extract. This was only observed with vesicles derived from minus mating type (mt-) gametes. After fractionation of the extract, one high-molecular weight glycoprotein fraction appeared to be responsible for this activity. When extracts were treated with cross-linking agents, a pelletable fraction was obtained with isoagglutinative activity. We conclude that the mt- factor, responsible for twitch activity, causes isoagglutination when it is rendered multivalent.  相似文献   

13.
A low density membrane fraction, isolated from the bloodstream stage of Trypanosoma rhodesiense and enriched in flagellar pocket membrane, was characterized with regard to antigenicity using antibodies raised against purified flagellar pocket membrane. Mild trypsinolysis of flagellar pocket membrane released two small peptides (Mr = 13-16 X 10(3)) separated by chromatofocusing (pI = 6.8 and 5.8) that were antigenic as monitored by fused rocket immunoelectrophoresis. Both of these antigenic peptides were enriched in relative fluorescence when flagellar pocket membrane was prepared from surface labeled (fluorescamine-beta-cyclodextrin) trypanosomes, indicating that cleaved peptides were on the external (luminal) side of the flagellar pocket membrane. More extensive release of fluorescamine labeled flagellar pocket membrane components was affected using mild detergent treatment (0.15% Zwittergent 3-12/0.4% Triton X-100), crossed immunoelectrophoresis separating two prominent antigens was more pronounced after incubation of flagellar pocket membrane with either porcine pancreas phospholipase A2 or umbilical cord sphingomyelinase. The use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent electroblotting to nitrocellulose also revealed two principal flagellar pocket membrane antigens (Mr approximately 60 and 66 X 10(3)), the latter showing greater release after exposure to sphingomyelinase or phospholipase, compared to mild detergent or 50 mM acetate, pH 5.0. Both antigens were glycoprotein as judged by electroblotting and the use of concanavalin A conjugated horseradish peroxidase as probe. Neither flagellar pocket membrane antigen was found to react with monoclonal antibodies prepared against T. rhodesiense variable surface antigen. The use of flagellar pocket membrane in the presence of Freund's complete adjuvant was found to protect mice against challenge infections with either the CP344 clone or uncloned CT Well-come isolate of T. rhodesiense.  相似文献   

14.
Polypeptides from flagella or axonemes of Chlamydomonas reinhardtii were analyzed by labeling cellular proteins by prolonged growth on 35S- containing media and using one- and two-dimensional electrophoretic techniques which can resolve greater than 170 axonemal components. By this approach, a paralyzed mutant that lacks axonemal radial spokes, pf14, has been shown to lack 17 polypeptides in the molecular weight range of 20,000 to 124,000 and in the isoelectric point range of 4.8- 7.1. Five of those polypeptides are also missing in the mutant pf-1 which lacks only radial spokeheads. The identification of the 17 polypeptides missing in pf-14 as components of radial spoke structures and the localization of the polypeptides lacking in pf-1 within the spokehead, are supported by experiments of chemical dissection of wild- type axonemes. Extraction procedures that solubilize outer and inner dynein arms preserve the structure of the radial spokes along with the 17 polypeptides in question. Six radial spoke polypeptides are solubilized in conditions that cause disassembly of radial spokeheads from the stalks and those components include the five polypeptides missing in pf-1. No Ca++- or Mg++-activated ATPase activities were found to be associated with solubilized preparations of wild-type radial spokeheads. In vivo pulse 32P incorporation experiments provide evidence that greater than 80 axonemal components are labeled by 32P and that five of the radial spoke stalk polypeptides are modified to different extents.  相似文献   

15.
Two types of Chlamydomonas reinhardtii flagellar mutants (idaA and idaB) lacking partial components of the inner-arm dynein were isolated by screening mutations that produce paralyzed phenotypes when present in a mutant missing outer-arm dynein. Of the currently identified three inner-arm subspecies I1, I2, and I3, each containing two heterologous heavy chains (Piperno, G., Z. Ramanis, E. F. Smith, and W. S. Sale. 1990. J. Cell Biol. 110:379-389), idaA and idaB lacked I1 and I2, respectively. The 13 idA isolates comprised three genetically different groups (ida1, ida2, ida3) and the two idaB isolates comprised a single group (ida4). In averaged cross-section electron micrographs, inner dynein arms in wild-type axonemes appeared to have two projections pointing to discrete directions. In ida1-3 and ida4 axonemes, on the other hand, either one of them was missing or greatly diminished. Both projections were weak in the double mutant ida1-3 x ida4. These observations suggest that the inner dynein arms in Chlamydomonas axonemes are aligned not in a single straight row, but in a staggered row or two discrete rows. Both ida1-3 and ida4 swam at reduced speed. Thus, the inner-arm subspecies missing in these mutants are not necessary for flagellar motility. However, the double mutants ida1-3 x ida4 were nonmotile, suggesting that axonemes with significant defects in inner arms cannot function. The inner-arm dynein should be important for the generation of axonemal beating.  相似文献   

16.
Antisera raised against vegetative and gametic flagella of Chlamydomonas reinhardi have been used to probe dynamic properties of the flagellar membranes. The antisera, which agglutinate cells via their flagella, associate with antigens that are present on both vegetative and gametic membranes and on membranes of both mating types (mt+ and mt-). Gametic cells respond to antibody presentation very differently from vegetative cells, mobilizing even high concentrations of antibody towards the flagellar tips; the possibility is discussed that such "tipping" ability reflects a differentiated gametic property relevant to sexual agglutinability. Gametic cells also respond to antibody agglutination by activating their mating structures, the mt+ reaction involving a rapid polymerization of microfilaments. Several impotent mt+ mutant strains that fail to agglutinate sexually are also activated by the antisera and procede to form zygotes with normal mt- gametes. Fusion does not occur between activated cells of like mating type. Monovalent (Fab) preparations of the antibody fail to activate mt+ gametes, suggesting that the cross-linking properties of the antisera are essential for their ability to mimic, or bypass, sexual agglutination.  相似文献   

17.
18.
The ability to rapidly translocate polystyrene microspheres attached to the surface of a plasma membrane domain reflects a unique form of cellular force transduction occurring in association with the plasma membrane of microtubule based cell extensions. This unusual form of cell motility can be utilized by protistan organisms for whole cell locomotion, the early events in mating, and transport of food organisms along the cell surface, and possibly intracellular transport of certain organelles. Since surface motility is observed in association with cilia and flagella of algae, sea urchin embryos and cultured mammalian cells, it is likely that it serves an additional role beyond those already cited; this is likely to be the transport of precursors for the assembly and turnover of ciliary and flagellar membranes and axonemes. In the case of the Chlamydomonas flagellum, where surface motility has been most extensively studied, it appears that cross-linking of flagellar surface exposed proteins induces a transmembrane signaling pathway that activates machinery for moving flagellar membrane proteins in the plane of the flagellar membrane. This signaling pathway in vegetative Chlamydomonas reinhardtii appears to involve an influx of calcium, a rise in intraflagellar free calcium concentration and a change in the level of phosphorylation of specific membrane-matrix proteins. It is hypothesized that flagellar surface contact with a solid substrate (during gliding), a polystyrene microsphere or another flagellum (during mating) will all activate a signaling pathway similar to the one artificially activated by the use of monoclonal antibodies to flagellar membrane glycoproteins. A somewhat different signaling pathway, involving a transient rise in intracellular cAMP level, may be associated with the mating of Chlamydomonas gametes, which is initiated by flagellum-flagellum contact. The hypothesis that the widespread observation of microsphere movements on various ciliary and flagellar surfaces may reflect a mechanism normally utilized to transport axonemal and membrane subunits along the internal surface of the organelle membrane presents a paradox in that one would expect this to be a constitutive mechanism, not one necessarily activated by a signaling pathway.  相似文献   

19.
Sexual agglutinins located on the flagellar membranes of Chlamydomonas gametes mediate a mating-type-specific adhesion reaction that brings complementary gametes together for zygotic cell fusion. We identify the mating-type plus agglutinin, using a combination of biochemical and genetic analysis, as a glycopolypeptide with an apparent molecular weight of >106 by SDS-polyacylamide gel electrophoresis. Its core polypeptide migrates as a ~480-kd species, and it is estimated to be present in ~30 copies per gametic flagellum. The agglutinin is present in the wild type, in a mutant that agglutinates but cannot fuse, and in a complementing diploid, whereas it is absent from four nonagglutinating mutants and from a noncomplementing diploid. Electron microscopy shows the purified agglutinin to be a highly asymmetric molecule, 220 × 4 nm. To our knowledge, this is the first reported purification and visualization of a membrane-associated cell-cell recognition protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号