首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulrich Schreiber  Mordhay Avron 《BBA》1979,546(3):436-447
1. The reverse reactions induced by coupled ATP hydrolysis were studied in spinach chloroplasts by measurements of the ATP-induced increase in chlorophyll fluorescence reflecting reverse electron flow, and of the ATP-induced decrease in 9-aminoacridine fluorescence, representing formation of the transthylakoidal proton gradient (ΔpH). ATP-driven reverse electron flow was kinetically analysed into three phases, of which only the second and third one were paralleled by corresponding phases in ΔpH formation. The rapid first phase and formation of a ΔpH occur also in the absence of the electron transfer mediator phenazine methosulfate.2. The rate and extent of the reverse reactions were measured at temperatures in the range from 0 to 30°C. The rate of formation of ΔpH and of reverse electron flow were faster at high temperatures, but the maximal extent of ΔpH and chlorophyll fluorescence increase were observed at the lowest temperature. Considering rate and extent of the ATP-stimulated reactions, a temperature optimum around 15°C was found. Light activation of the ATPase occurred throughout the range studied. At 0°C and in the presence of inorganic phosphate the activated state for ATPase was maintained for more then 10 min.3. The ATP-induced rise in chlorophyll fluorescence yield was found to be of similar magnitude as the rise induced by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), when both were measured with an extremely weak measuring beam. It is concluded, that both effects, although derived via distinctly different pathways, are limited by the same electron donating or electron accepting pool.  相似文献   

2.
1. The reverse reactions induced by coupled ATP hydrolysis were studied in spinach chloroplasts by measurements of the ATP-induced increase in chlorophyll fluorescence reflecting reverse electron flow, and of the ATP-induced decrease in 9-aminoacridine fluorescence, representing formation of the transthylakoidal proton gradient (deltapH). ATP-induced reverse electron flow was kinetically analysed into three phases, of which only the second and third one were paralleled by corresponding phases in deltapH formation. The rapid first phase and formation of a deltapH occur also in the absence of the electron transfer mediator phenazine methosulfate. 2. The rate and extent of the reverse reactions were measured at temperatures in the range from 0 to 30 degrees C. The rate of formation of delta pH and of reverse electron flow were faster at high temperatures, but the maximal extent of delta pH and chlorophyll fluorescence increase were observed at the lowest temperature. Considering rate and extent of the ATP-stimulated reactions, a temperature optimum around 15 degrees C was found. Light activation of the ATPase occurred throughout the range studied. At 0 degrees C and in the presence of inorganic phosphate the activated state for ATPase was maintained for more than 10 min. 3. The ATP-induced rise in chlorophyll fluorescence yield was found to be of similar magnitude as the rise induced by 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (DCMU), when both were measured with an extremely weak measuring beam. It is concluded, that both effects, although derived via distinctly different pathways, are limited by the same electron donating or electron accepting pool.  相似文献   

3.
Acid-base driven reverse electron flow in isolated chloroplasts.   总被引:1,自引:0,他引:1  
Y Shahak  H Hardt  M Avron 《FEBS letters》1975,54(2):151-154
  相似文献   

4.
5.
Energy dependent reverse electron flow reactions in isolated thylakoids provide a unique tool to study, in the dark, the coupling between the ATP synthase, proton transport and the electron transfer system. Appropriate experimental conditions have been established to follow experimentally the following reactions:
  1. ATP driven proton uptake into the inner-thylakoid space, which requires preactivation of the ATP synthase.
  2. ATP driven reverse electron transport, which involves proton transport as an intermediate, and results in the reduction of QA by an externally added electron donor.
  3. ATP driven luminescence, which requires the presence of an oxidized partner on the water side of photosystem II, and involves electron transport from QB to QA.
  4. ΔpH driven reverse electron flow, which does not require the participation of the ATP synthase, and uses reduced intermediates between the two photosystems as electron donors for the reduction of QA.
  5. ΔpH driven luminescence which again uses reduced intermdiates between the two photosystems as electron donors for QA reduction, and requires the presence of an oxidized partner on the water side of photosystem II.
Several of these reactions have been shown to occur in intact chloroplasts and may provide an important regulatory mechanism in vivo.  相似文献   

6.
7.
The concentration and absorption of methylphenazinium cations (MP+) in suspensions of pea chloroplasts are simultaneously lowered during rapid (approximately 10s) illumination. The light-induced changes of absorption and concentration of MP+ reveal similar sensitivity towards some inhibitors and uncouplers and are determined by MP+ uptake by the thylakoids. The time-course of light-induced MP+ uptake was found to be modified in the presence of dithioerythritol, Mg2+ and ATP, i. e. under conditions which induce the ATPase activity and ATP hydrolysis in chloroplasts. The kinetic curve of light-induced MP+ uptake under these conditions consists of a relatively fast (approximatley 10 s) and a slow (approximately 10 min) components. The slow ATP-dependent component of MP+ uptake is enhanced by low concentrations of gramicidin and is completely inhibited by the energy transfer inhibitor--dicyclohexylcarbodiimide. The data obtained suggest that the light-induced energization of the chloroplast membrane is accompanied by the transport of MP+ into the thylakoids against the electrical potential and concentration gradients.  相似文献   

8.
9.
10.
Wieckowski  S.  Bojko  M. 《Photosynthetica》1998,34(4):481-496
The NADPH-dependent reduction of some photosynthetic electron carriers in the dark, and the reduction of NADP+ associated with the glycolytic sequence and the oxidative pentose phosphate pathway in chloroplasts are reviewed. The postulated pathways of electron transports sensitive and insensitive to antimycin A are also evaluated. It is proposed that the electron flow, predominantly through cytochrome bf complex, may be also involved in the pathway of NADPH-dependent and antimycin A-insensitive back electron transport. An information on the chlororespiration in higher plants is also included.  相似文献   

11.
The kinetic behaviours of cytochrome b-563 and cytochrome f are shown to be consistent with their participation in coupled cyclic electron flow in intact chloroplasts. Electron transfer between cytochromes b-563 and cytochrome f is antimycin sensitive. Fluorescence induction studies indicate that plastoquinone may function in a coupled step between the cytochromes.  相似文献   

12.
The NADPH-dependent reduction of some photosynthetic electron carriers in the dark, and the reduction of NADP+ associated with the glycolytic sequence and the oxidative pentose phosphate pathway in chloroplasts are reviewed. The postulated pathways of electron transports sensitive and insensitive to antimycin A are also evaluated. It is proposed that the electron flow, predominantly through cytochrome bf complex, may be also involved in the pathway of NADPH-dependent and antimycin A-insensitive back electron transport. An information on the chlororespiration in higher plants is also included. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
14.
15.
16.
Using thylakoid membranes, we previously demonstrated that accumulated electrons in the photosynthetic electron transport system induces the electron flow from the acceptor side of PSII to its donor side only in the presence of a pH gradient ((Delta)pH) across the thylakoid membranes. This electron flow has been referred to as cyclic electron flow within PSII (CEF-PSII) [Miyake and Yokota (2001) Plant Cell Physiol. 42: 508]. In the present study, we examined whether CEF-PSII operates in isolated intact chloroplasts from spinach leaves, by correlating the quantum yield of PSII [Phi(PSII)] with the activity of the linear electron flow [V(O(2))]. The addition of the protonophore nigericin to the intact chloroplasts decreased Phi(PSII), but increased V(O(2)), and relative electron flux in PSII [Phi(PSII) x PFD] and V(O(2)) were proportional to one another. Phi(PSII) x PFD at a given V(O(2)) was much higher in the presence of (Delta)pH than that in its absence. These effects of nigericin on the relationship between Phi(PSII) x PFD and V(O(2)) are consistent with those previously observed in thylakoid membranes, indicating the occurrence of CEF-PSII also in intact chloroplasts. In the presence of (Delta)pH, CEF-PSII accounted for the excess electron flux in PSII that could not be attributed to photosynthetic linear electron flow. The activity of CEF-PSII increased with increased light intensity and almost corresponded to that of the water-water cycle (WWC), implying that CEF-PSII can dissipate excess photon energy in cooperation with WWC to protect PSII from photoinhibition under limited photosynthesis conditions.  相似文献   

17.
Mantai KE 《Plant physiology》1970,45(5):563-566
Digestion of spinach chloroplasts with pancreatic lipase or trypsin effectively uncoupled electron transport. Continued digestion led to inhibition of saturated rates of Hill reaction activity and a decrease in quantum yield. Irradiation with ultraviolet light decreased the quantum yield and inhibited Hill activity, but did not uncouple. Ascorbate-dichlorophenol-indophenol-mediated reduction of nicotinamide adenine dinucleotide phosphate was not appreciably inhibited by treatment with either of the enzymes or by ultraviolet irradiation.  相似文献   

18.
19.
20.
Cylic electron flow (CEF) around Photosystem I in photosynthetic eukaryotes is likely to be necessary to augment ATP production, rapidly- and precisely balancing the plastid ATP/NADPH energy budget to meet the demands of downstream metabolism. Many regulatory aspects of this process are unclear. Here we demonstrate that the higher plant plastid NADH/Fd:plastoquinone reductase (NDH) and proposed PGR5/PGRL1 ferredoxin:plastoquinone reductase (FQR) pathways of CEF are strongly, rapidly and reversibly inhibited in vitro by ATP with Ki values of 670 μM and 240 μM respectively, within the range of physiological changes in ATP concentrations. Control experiments ruled out effects on secondary reactions, e.g. FNR- and cytochrome b6f activity, nonphotochemical quenching of chlorophyll fluorescence etc., supporting the view that ATP is an inhibitor of CEF and its associated pmf generation and subsequent ATP production. The effects are specific to ATP, with the ATP analog AMP-PNP showing little inhibitory effect, and ADP inhibiting only at higher concentrations. For the FQR pathway, inhibition was found to be classically competitive with Fd, and the NDH pathway showing partial competition with Fd. We propose a straightforward model for regulation of CEF in plants in which CEF is activated under conditions when stromal ATP low, but is downregulated as ATP levels build up, allowing for effective ATP homeostasis. The differences in Ki values suggest a two-tiered regulatory system, where the highly efficient proton pumping NDH is activated with moderate decreases in ATP, with the less energetically-efficient FQR pathway being activated under more severe ATP depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号