首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Restriction On Computer (ROC) program (freely available at http://www.mcb.harvard.edu/ gilbert/ROC) was developed and used to analyze the restriction fragment length distribution in the human genome. In contrast to other programs searching for restriction sites, ROC simultaneously analyzes several long nucleotide sequences, such as the entire genomes, and in essence simulates electrophoretic analysis of DNA restriction fragments. In addition, this program extracts and analyzes DNA repeats that account for peaks in the restriction fragment length distribution. The ROC analysis data are consistent with the experimental data obtained via in vitro restriction enzyme analysis (DNA taxonoprint). A difference between the in vitro and in silico results is explained by underrepresentation of tandem DNA repeats in genomic databases. The ROC analysis of individual genome fragments elucidated the nature of several DNA markers, which were earlier revealed by DNA taxonoprint, and showed that L1 and Alurepeats are nonrandomly distributed in various chromosomes. Another advantage is that the ROC procedure makes it possible to analyze the nonrandom character of a genomic distribution of short DNA sequences. The ROC analysis showed that a low poly(G) frequency is characteristic of the entire human genome, rather than of only coding sequences. The method was proposed for a more complex in silico analysis of the genome. For instance, it is possible to simulate DNA restriction together with blot hybridization and then to analyze the nature of markers revealed.  相似文献   

2.
We have developed a website, www.in-silico.com, which runs a software program that performs three basic tasks in completely sequenced bacterial genomes by in silico analysis: PCR amplification, amplified fragment length polymorphism (AFLP-PCR) and endonuclease restriction. For PCR, after selection of the genome and introduction of primers, fragment size, DNA sequence and corresponding open reading frame (ORF) identity of the resulting PCR product is computed. Plasmids of sequenced species may be included in the analysis. Theoretical AFLP-PCR analyzes similar parameters, and includes a suggestion tool providing a list of commercial restriction enzyme pairs yielding up to 50 amplicons in the selected genome. Endonuclease restriction analysis of complete genomes and plasmids calculates the number of restriction sites for endonucleases in a given genome. If the number of fragments is 50 or fewer, pulsed field gel electrophoresis image and restriction maps are illustrated. Other tools that have been included in this site are ORF search by name and DNA to protein translation as well as restriction digestion of user-defined DNA sequences. AVAILABILITY: This is a new molecular biology resource freely available over the Internet at http://www.in-silico.com  相似文献   

3.
Genetic/genomic polymorphism, i.e. variations in DNA sequences are ideally assayed by direct nucleotide sequencing of a gene region or other homologous segment of the genome. An easier and cheaper approach, however, if the variants are analyzed by hybridization technology using restriction fragment length polymorphisms (RFLPs) or by detection of the number of tandem repeats (VNTR) of small DNA segments, the "minisatellites". In this study we describe results of the DNA analysis of repetitive sequences of human 6th chromosome by the application of a chemiluminescent labeled probes. The allele frequency distribution of polymorphic DNA sequences has been determined in unrelated individuals. The isolated genomic DNA was cut with Pst I restriction enzyme, size fractionated on agarose gel and hybridized with a chemiluminescent labeled D6 S132 probe. At this locus the Pst I cleaved DNA fragments are ranging from 1841 to 6098 base pairs (bp). Specific genetic pattern was characterized by more frequent fragments (3313 and 3884 bp), and the rarely occurring ones (clustered between 1841-2595 and 5227-6098 bp). Our study provides a further possibility for characterization of individual genomic patterns.  相似文献   

4.
5.
6.
A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (<100 bp) lacking the T-DNA insertion, hence improving the chance of ligation between adapters and fragments harbouring a T-DNA. Two enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.  相似文献   

7.
The simultaneous analysis of multiple loci could substantially increase the efficiency of mapping studies. Toward this goal, we used the polymerase chain reaction to amplify multiple DNA fragments originating from dispersed genomic segments that are flanked by Alu repeats. Analysis of different human DNA samples revealed numerous amplification products distinguishable by size, some of which vary between individuals. A family study demonstrated that these polymorphic fragments are inherited in a Mendelian fashion. Because of the ubiquitous distribution of Alu repeats, these markers, called "alumorphs," could be useful for linkage mapping of the human genome. A major advantage of alumorphs is that no prior knowledge of DNA sequence of marker loci is required. This approach may find general application for any genome where interspersed repetitive sequences are found.  相似文献   

8.

The reduced representation bisulfite sequencing (RRBS) method has been developed for the high-throughput analysis of DNA methylation based on the sequencing of genomic libraries treated with sodium bisulfite by next-generation approaches. In contrast to whole-genome sequencing, the RRBS approach elaborates specific endonucleases to prepare libraries in order to produce pools of CpG-rich DNA fragments. The original RRBS technology based on the use of the MspI libraries allows one to increase the relative number of CpG islands in the pools of genomic fragments compared to whole-genome bisulfite sequencing. Nevertheless, this technology is rarely used due to the high cost compared with bisulfite methylation analysis with hybridization microarrays and significant residual amount of data represented by the sequences of genomic repeats that complicates the alignment and is not of particular interest for developing DNA methylation markers, which is often the main goal of biomedical research. We have developed an algorithm for estimating the likelihood that recognition sites of restriction endonucleases will be represented in CpG islands and present a method of reducing the effective size of the RRBS library without a significant loss of the CpG islands based on the use of the XmaI endonuclease for library preparation. In silico analysis demonstrates that the optimum range of the XmaI-RRBS fragment lengths is 110–200 base pairs. The sequencing of this library allows one to assess the methylation status of over 125000 CpG dinucleotides, of which over 90000 belong to CpG islands.

  相似文献   

9.
We report a general method for the detection of restriction fragment length alterations associated with mutations or polymorphisms using whole genomic DNA rather than specific cloned DNA probes. We utilized a modified Southern Cross hybridization to display the hybridization pattern of all size-separated restriction fragments from wild-type Caenorhabditis elegans to all the corresponding fragments in a particular mutant strain and in a distinct C. elegans variety. In this analysis, almost all homologous restriction fragments are the same size in both strains and result in an intense diagonal of hybridization, whereas homologous fragments that differ in size between the two strains generate an off-diagonal spot. To attenuate the contribution of repeated sequences in the genome to spurious off-diagonal spots, restriction fragments from each genome were partially resected with a 3' or 5' exonuclease and not denatured, so that only the DNA sequences at the ends of these fragments could hybridize. Off-diagonal hybridization spots were detected at the expected locations when genomic DNA from wild-type was compared to an unc-54 mutant strain containing a 1.5 kb deletion or to a C. elegans variety that contains dispersed transposon insertions. We suggest that this modified Southern Cross hybridization technique could be used to identify restriction fragment length alterations associated with mutations or genome rearrangements in organisms with DNA complexities as large as 10(8) base pairs and, using rare-cutting enzymes and pulse-field gel electrophoresis, perhaps as large as mammalian genomes. This information could be used to clone fragments associated with such DNA alterations.  相似文献   

10.
The cleavage patterns of 23 rare-cutting restriction endonucleases (rcREs) on high molecular weight DNA, isolated from leaves of Arabidopsis thaliana (Arabidopsis), have been analysed using pulsed field gel electrophoresis (PFGE). The DNA digested with rcREs can be used for restriction fragment length polymorphism (RFLP) analysis. We show that RFLPs are more readily identified in restriction fragments that require resolution by PFGE than in smaller restriction fragments. Taking advantage of the low dispersed repetitive DNA content of the Arabidopsis genome, whole yeast artificial chromosomes (YACs) were used as probes to PFGE resolved genomic DNA. This enabled whole YAC clones to be used as RFLP markers and long range restriction maps to be constructed. These techniques should enhance the analysis of regions of the genome of Arabidopsis (and other organisms with low levels of dispersed repetitive DNA) that are the subject of chromosome walking strategies to isolate particular loci.  相似文献   

11.
An analysis of a 29-kilobase nontranscribed spacer fragment in the ribosomal DNA (rDNA) of the house cricket, Acheta domesticus, revealed a highly repetitious structure. A total of eight EcoRI repeats of three different size classes measuring 259, 420, and 508 base pairs (bp) was mapped to a region 2 kilobases (kb) from the 18 S coding region. The repeats were oriented in a nonrandom manner and had sequences homologous to DNA located immediately adjacent to the repetitive array. DNA sequence analysis showed that the repetitive region was composed of smaller direct repeats 66, 67, and 383 bp in length. There was minor length heterogeneity of the chromosomal restriction fragments containing the entire array, indicating that a variable number of EcoRI repeats is a minor contributor to the total repeat-unit length heterogeneity. Immediately upstream from the EcoRI array there is a 17-kb region composed of 50 to 60 subrepeat elements recognized by a variety of restriction endonucleases. A subcloned SmaI repeat from the array was not homologous to any other part of the rDNA repeat unit or other chromosomal DNA. There was little length heterogeneity in restriction fragments containing the chromosomal 17-kb repetitions region. Immediately upstream from the 17-Kb region there is a 4.1-kb segment with sequences homologous to the EcoRI repeats.  相似文献   

12.
HindIII-O/N DNA fragments of vaccinia virus (VV) of the LIVP strain were mapped using thirteen restriction endonucleases. Nucleotide sequences of the HindIII-O fragment (1530 bp) as well as of a site of the HindIII-N genome fragment 353 bp in size were determined. Comparison of restriction maps and nucleotide sequences of VV strains (WR and LIVP) demonstrated that DNA of VV LIVP contained % deletions and 2 insertions. "Reliable" short direct repeats were localized and their possible role in formation of DNA deletions was shown. It was suggested that VV endonuclease and DNA-ligase participate in replication and repair processes. Mechanism of formation of variable sequences of viral genomes is discussed.  相似文献   

13.
The genomic cleavage map of the type strain Fibrobacter succinogenes S85 was constructed. The restriction enzymes AscI, AvrII, FseI, NotI, and SfiI generated DNA fragments of suitable size distribution that could be resolved by pulsed-field gel electrophoresis (PFGE). An average genome size of 3.6 Mb was obtained by summing the total fragment sizes. The linkages between the 15 AscI fragments of the genome were determined by combining two approaches: isolation of linking clones and cross-hybridization of restriction fragments. The genome of F. succinogenes was found to be represented by the single circular DNA molecule. Southern hybridization with specific probes allowed the eight genetic markers to be located on the restriction map. The genome of this bacterium contains at least three rRNA operons. PFGE of the other three strains of F. succinogenes gave estimated genome sizes close to that of the type strain. However, RFLP patterns of these strains generated by AscI digestion are completely different. Pairwise comparison of the genomic fragment distribution between the type strain and the three isolates showed a similarity level in the region of 14.3% to 31.3%. No fragment common to all of these F. succinogenes strains could be detected by PFGE. A marked degree of genomic heterogeneity among members of this species makes genomic RFLP a highly discriminatory and useful molecular typing tool for population studies. Received: 23 October 1996 / Accepted: 31 December 1996  相似文献   

14.
Recently, the nucleotide sequences of entire genomes became available. This information combined with older sequencing data discloses the exact chromosomal location of millions of nucleotide markers stored in the databases at NCBI, EMBO or DDBJ. Despite having resolved the intron/exon structures of all described genes within these genomes with a stroke of a pen, the sequencing data opens up other interesting possibilities. For example, the genomic mapping of the end sequences of the human, murine and rat BAC libraries generated at The Institute for Genomic Research (TIGR), reveals now the entire encompassed sequence of the inserts for more than a million of these clones. Since these clones are individually stored, they are now an invaluable source for experiments which depend on genomic DNA. Isolation of smaller fragments from such clones with standard methods is a time consuming process. We describe here a reliable one-step cloning technique to obtain a DNA fragment with a defined size and sequence from larger genomic clones in less than 48 hours using a standard vector with a multiple cloning site, and common restriction enzymes and equipment. The only prerequisites are the sequences of ends of the insert and of the underlying genome.  相似文献   

15.
Organization of delta-crystallin genes in the chicken.   总被引:9,自引:1,他引:8       下载免费PDF全文
Double-stranded DNA was synthesized from delta-crystallin mRNA prepared from lens fibers of 15-day-old chick embryos and cloned at the Pst I site of the plasmid pBR322. Using the cloned cDNA and single-stranded cDNA as hybridization probes, a number of genomic DNA fragments containing delta-crystallin gene sequences have been cloned from the partial and complete EcoRI digests of chick brain DNA. One of the clones from the partial digests contains a DNA fragment that consists of four EcoRI fragments of 7.6 kb, 4.0 kb, 2.6 kb, and 0.8 kb. The gene sequences reside in the (5')7.6 kb - 0.8 kb - 4.0 kb (3') fragments. Electron microscopy has provided evidence that the cloned DNA fragment includes the entire gene sequences complementary to delta-crystallin mRNA except for the 3' terminal poly(A) tail, and that the delta-crystallin gene is interrupted by at least 13 intervening sequences. Another clone contains a genomic fragment that consists of two EcoRI fragments of 3.0 kb and 11 kb. The DNA fragment in the latter clone represents a different delta-crystallin gene, as judged by restriction endonuclease mapping and by electron microscopy.  相似文献   

16.
17.
Physical map of the Myxococcus xanthus chromosome.   总被引:22,自引:12,他引:10       下载免费PDF全文
The genome of Myxococcus xanthus, which is 9,454 kbp, is one of the largest bacterial genomes. The organization of the DNA and the distribution of genes encoding social and developmental behaviors were examined by using pulsed field gel electrophoresis. Intact genomic DNA was digested with AseI into 16 restriction fragments, which were separated by contour-clamped homogeneous electric field electrophoresis, purified, and radiolabeled. Each AseI fragment was hybridized to SpeI-digested DNA and to an M. xanthus genomic library contained in yeast artificial chromosomes. Some SpeI restriction fragments and yeast artificial chromosome clones contained AseI sites and hybridized with two different AseI restriction fragments, providing evidence for the juxtaposition of these AseI restriction fragments in the chromosome. The deduced AseI physical map is circular, suggesting that this bacterium contains a single, circular chromosome. Transposable elements shown by transduction to be in or near genes of interest were located on specific AseI restriction fragments by restriction analysis and Southern hybridization. Most AseI restriction fragments contained genes involved in social and developmental behaviors.  相似文献   

18.
M Rosenberg  S Segal  E L Kuff  M F Singer 《Cell》1977,11(4):845-857
DNA fragments containing monkey DNA sequences have been isolated from defective SV40 genomes that carry host sequences in place of portions of the SV40 genome. The fragments were isolated by restriction endonuclease cleavage and contain segments homologous to sequences in both the highly repetitive and unique (or less repetitive) classes of monkey DNA. The complete nucleotide sequence of one such fragment [151 base pairs (bp)] predominantly homologous to the highly reiterated class of monkey DNA was determined using both RNA and DNA sequencing methods. The nucleotide sequence of this homogeneous DNA segment does not contain discernible multiple internal repeating units but only a few short oligonucleotide repeats. The reiteration frequency of the sequence in the monkey genome is >106. Digestion of total monkey DNA (from uninfected cells) with endonuclease R Hind III produces relatively large amounts of discrete DNA fragments that contain extensive regions homologous to the fragment isolated from the defective SV40 DNA.A second fragment, also containing monkey sequences, was isolated from the same defective substituted SV40 genome. The nucleotide sequence of the 33 bp of this second fragment that are contiguous to the 151 bp fragment has also been determined.The sequences in both fragments are also present in other, independently derived, defective substituted SV40 genomes.  相似文献   

19.
20.
The hybridization of human DNA with three non-cross-hybridizing monomers (68 bp in length) of the heterochromatic Sau3A family of DNA repeats, indicates the coexistence within a Sau3A-positive genomic block of divergent Sau3A units as well as of unrelated sequences. To gain some insight into the structure of these human heterochromatic DNA regions, three previously cloned Sau3A-positive genomic fragments (with a total length of approximately 1900 base-pairs (bp] were sequenced. The analysis of the sequences showed the presence of clustered Sau3A units with different degrees of divergence and of two DNA regions of approximately 100 bp and 291 bp in length, unrelated to the family of repeats. A consensus sequence derived from the 24 identified Sau3A monomers presents, among highly variable regions, two less variant regions of 8 bp and 10 bp in length, respectively. The Sau3A-unrelated DNA fragment 291 bp in length, used as a probe on genomic DNA digested with a series of restriction enzymes, defines a "new" family of DNA repeats possessing periodicities for HaeIII (HaeIII family). Sau3A and HaeIII repeats display a high degree of linkage in a collection of Sau3A-positive genomic recombinant phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号