首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ewalt KL  Schimmel P 《Biochemistry》2002,41(45):13344-13349
Aminoacyl-tRNA synthetases establish the rules of the genetic code by joining amino acids to tRNAs that bear the anticodon triplets corresponding to the attached amino acids. The enzymes are thought to be among the earliest proteins to appear, in the transition from a putative RNA world to the theater of proteins. Over their long evolution, the enzymes have acquired additional functions that typically require specialized insertions or domain fusions. Recently, fragments of the closely related human tyrosyl- and tryptophanyl-tRNA synthetases were discovered to be active in angiogenesis signaling pathways. One synthetase fragment has proangiogenic activity, while the other is antiangiogenic. Activity was demonstrated in cell-based assays in vitro and in vivo in the chick embryo, and in the neonatal and adult mouse. The full-length, native enzymes are inactive in these same assays. Activation of angiogenesis activity requires fragment production from the native enzymes by protease cleavage or by translation of alternatively spliced pre-mRNA. Thus, these tRNA synthetases link translation to a major cell-signaling pathway in mammalian cells. The results with animals suggest that therapeutic applications are possible with these tRNA synthetases.  相似文献   

2.
The hormone erythropoietin (Epo) is essential for red blood cell development. Epo binds a high affinity receptor on the surface of erythroid progenitor cells, stimulating receptor dimerization and activation of the intracellular signal transduction pathways that support erythroid cell survival, proliferation and differentiation. Biochemical and structural analysis of the erythropoietin receptor (EpoR) is revealing the molecular mechanisms of EpoR function, leading the way to the development of small molecule Epo mimetics. This review focuses on the role EpoR dimerization plays in receptor function.  相似文献   

3.
4.
Receptors coupled to heterotrimeric G proteins are linked to activation of mitogen-activated protein kinases (MAPKs) via receptor- and cell-specific mechanisms. We have demonstrated recently that gonadotropin-releasing hormone (GnRH) receptor occupancy results in activation of extracellular signal-regulated kinase (ERK) through a mechanism requiring calcium influx through L-type calcium channels in alphaT3-1 cells and primary rat gonadotropes. Further studies were undertaken to explore the signaling mechanisms by which the GnRH receptor is coupled to activation of another member of the MAPK family, c-Jun N-terminal kinase (JNK). GnRH induces activation of the JNK cascade in a dose-, time-, and receptor-dependent manner in clonal alphaT3-1 cells and primary rat pituitary gonadotrophs. Coexpression of dominant negative Cdc42 and kinase-defective p21-activated kinase 1 and MAPK kinase 7 with JNK and ERK indicated that specific activation of JNK by GnRH appears to involve these signaling molecules. Unlike ERK activation, GnRH-stimulated JNK activity does not require activation of protein kinase C and is not blocked after chelation of extracellular calcium with EGTA. GnRH-induced JNK activity was reduced after treatment with the intracellular calcium chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester), whereas activation of ERK was not affected. Chelation of intracellular calcium also reduced GnRH-induced activation of JNK in rat pituitary cells in primary culture. GnRH-induced induction and activation of the JNK target c-Jun was inhibited after chelation of intracellular calcium, whereas induction of c-Fos, a known target of ERK, was unaffected. Therefore, although activation of ERK by GnRH requires a specific influx of calcium through L-type calcium channels, JNK activation is independent of extracellular calcium but sensitive to chelation of intracellular calcium. Our results provide novel evidence that GnRH activates two MAPK superfamily members via strikingly divergent signaling pathways with differential sensitivity to activation of protein kinase C and mobilization of discrete pools of calcium.  相似文献   

5.
Unsaturated fatty acids are prone to radical reactions that occur in biological situations where extensive formation of reactive oxygen and nitrogen species (ROS and RNS) takes place. These reactions are frequent in inflammatory conditions such as atherosclerosis, and yield a variety of biologically active species, many of which are electrophilic in nature. Electrophilic lipid oxidation and nitration products can influence redox cell signaling via S-alkylation of protein thiols, and moderate exposure to these species evokes protective cell signaling responses through this mechanism. Herein, we review the stress signaling pathways elicited by electrophiles derived from unsaturated fatty acids, focusing on the Keap1-Nrf2 pathway, the heat shock response pathway (HSR), and the unfolded protein response pathway (UPR).  相似文献   

6.
Current scientific literature generally attributes the vasoconstrictor effects of [Arg(8)]vasopressin (AVP) to the activation of phospholipase C (PLC) and consequent release of Ca(2+) from the sarcoplasmic reticulum. However, half-maximal activation of PLC requires nanomolar concentrations of AVP, whereas vasoconstriction occurs when circulating concentrations of AVP are orders of magnitude lower. Using cultured vascular smooth muscle cells, we previously identified a novel Ca(2+) signaling pathway activated by 10-100 pM AVP. This pathway is distinguished from the PLC pathway by its dependence on protein kinase C (PKC) and L-type voltage-sensitive Ca(2+) channels (VSCC). In the present study, we used isolated, pressurized rat mesenteric arteries to examine the contributions of these different Ca(2+) signaling mechanisms to AVP-induced vasoconstriction. AVP (10(-14)-10(-6) M) induced a concentration-dependent constriction of arteries that was reversible with a V(1a) vasopressin receptor antagonist. Half-maximal vasoconstriction at 30 pM AVP was prevented by blockade of VSCC with verapamil (10 microM) or by PKC inhibition with calphostin-C (250 nM) or Ro-31-8220 (1 microM). In contrast, acute vasoconstriction induced by 10 nM AVP (maximal) was insensitive to blockade of VSCC or PKC inhibition. However, after 30 min, the remaining vasoconstriction induced by 10 nM AVP was partially dependent on PKC activation and almost fully dependent on VSCC. These results suggest that different Ca(2+) signaling mechanisms contribute to AVP-induced vasoconstriction over different ranges of AVP concentration. Vasoconstrictor actions of AVP, at concentrations of AVP found within the systemic circulation, utilize a Ca(2+) signaling pathway that is dependent on PKC activation and can be inhibited by Ca(2+) channel blockers.  相似文献   

7.
8.
Interleukin-8 (IL-8) is known to contribute to human cancer progression through its potential function as a mitogenic, angiogenic, or motogenic factor. We found a high level of IL-8 production in SK-N-MC human primitive neuroectodermal tumor cells transfected with the human RET gene (SK-N-MC (RET) cells) in response to glial cell line-derived neurotrophic factor (GDNF) stimulation. IL-8 was also produced at high levels in TT human medullary thyroid carcinoma and TPC-1 human papillary thyroid carcinoma cell lines both of which express activated RET tyrosine kinase. To investigate which signaling pathways are responsible for IL-8 expression, we treated SK-N-MC (RET) cells with several kinase inhibitors before GDNF stimulation. The results showed that a MEK1 inhibitor, PD98059, a p38MAPK inhibitor, SB202190, and a protein kinase C (PKC) inhibitor, Calphostin C, markedly decreased the IL-8 secretion from SK-N-MC (RET) cells at 24 h after GDNF stimulation. In contrast, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, increased its secretion. These results thus suggested that IL-8 production by RET tyrosine kinase is regulated by multiple signaling pathways.  相似文献   

9.
Protein expression in the heart is altered following periods of myocardial ischemia. The changes in protein expression are associated with increased cell size that can be maladaptive. There is little information regarding the regulation of protein expression through the process of mRNA translation during ischemia and reperfusion in the heart. Therefore, the purpose of this study was to identify changes in signaling pathways and downstream regulatory mechanisms of mRNA translation in an in vivo model of myocardial ischemia and reperfusion. Hearts were collected from rats whose left main coronary arteries had either been occluded for 25 min or reversibly occluded for 25 min and subsequently reperfused for 15 min. Following reperfusion, both the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways were activated, as evidenced by increased phosphorylation of Akt (PKB), extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. Activation of Akt stimulated signaling through the protein kinase mammalian target of rapamycin, as evidenced by increased phosphorylation of two of its effectors, the ribosomal protein S6 kinase and the eukaryotic initiation factor eIF4E binding protein 1. Ischemia and reperfusion also resulted in increased phosphorylation of eIF2 and eIF2B. These changes in protein phosphorylation suggest that control of mRNA translation following ischemia and reperfusion is modulated through a number of signaling pathways and regulatory mechanisms.  相似文献   

10.
11.
We have investigated the possible functional relationships between cellular invasion pathways induced by trefoil factors (TFFs), src, and the cyclooxygenases COX-1 and COX-2. Pharmacological inhibitors of the Rho small GTPase (C3 exoenzyme), phospholipase C (U-73122), cyclooxygenases (SC-560, NS-398), and the thromboxane A2 receptor (TXA2-R) antagonist SQ-295 completely abolished invasion induced by intestinal trefoil factor, pS2, and src in kidney and colonic epithelial cells MDCKts.src and PCmsrc. In contrast, invasion was induced by the TXA2-R mimetic U-46619, constitutively activated forms of the heterotrimeric G-proteins Galphaq (AGalphaq), Galpha12, Galpha13 (AGalpha12/13), which are signaling elements downstream of TXA2-R. Ectopic overexpression of pS2 cDNA and protein in MDCKts.src-pS2 cells and human colorectal cancer cells HCT8/S11-pS2 initiate distinct invasion signals that are Rho independent and COX and TXA2-R dependent. We detected a marked induction of COX-2 protein and accumulation of the stable PGH2/TXA2 metabolite TXB2 in the conditioned medium from cells transformed by src. This led to activation of the TXA2-R-dependent invasion pathway, which is monitored via a Rho- and Galpha12/Galpha13-independent mechanism using the Galphaq/PKC signaling cascade. These findings identify a new intracrine/paracrine loop that can be monitored by TFFs and src in inflammatory diseases and progression of colorectal cancers.  相似文献   

12.
The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.  相似文献   

13.
14.
TC21 causes transformation by Raf-independent signaling pathways.   总被引:1,自引:1,他引:1       下载免费PDF全文
Although the Ras-related protein TC21/R-Ras2 has only 55% amino acid identity with Ras proteins, mutated forms of TC21 exhibit the same potent transforming activity as constitutively activated forms of Ras. Therefore, like Ras, TC21 may activate signaling pathways that control normal cell growth and differentiation. To address this possibility, we determined if regulators and effectors of Ras are also important for controlling TC21 activity. First, we determined that Ras guanine nucleotide exchange factors (SOS1 and RasGRF/CDC25) synergistically enhanced wild-type TC21 activity in vivo and that Ras GTPase-activating proteins (GAPs; p120-GAP and NF1-GAP) stimulated wild-type TC21 GTP hydrolysis in vitro. Thus, extracellular signals that activate Ras via SOS1 activation may cause coordinate activation of Ras and TC21. Second, we determined if Raf kinases were effectors for TC21 transformation. Unexpectedly, yeast two-hybrid binding analyses showed that although both Ras and TC21 could interact with the isolated Ras-binding domain of Raf-1, only Ras interacted with full-length Raf-1, A-Raf, or B-Raf. Consistent with this observation, we found that Ras- but not TC21-transformed NIH 3T3 cells possessed constitutively elevated Raf-1 and B-Raf kinase activity. Thus, Raf kinases are effectors for Ras, but not TC21, signaling and transformation. We conclude that common upstream signals cause activation of Ras and TC21, but activated TC21 controls cell growth via distinct Raf-independent downstream signaling pathways.  相似文献   

15.
In multiple sclerosis (MS), long-term disability is primarily caused by axonal and neuronal damage. We demonstrated in a previous study that neuronal apoptosis occurs early during experimental autoimmune encephalomyelitis, a common animal model of MS. In the present study, we show that, in rats suffering from myelin oligodendrocyte glycoprotein (MOG)-induced optic neuritis, systemic application of erythropoietin (Epo) significantly increased survival and function of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. We identified three independent intracellular signaling pathways involved in Epo-induced neuroprotection in vivo: Protein levels of phospho-Akt, phospho-MAPK 1 and 2, and Bcl-2 were increased under Epo application. Using a combined treatment of Epo together with a selective inhibitor of phosphatidylinositol 3-kinase (PI3-K) prevented upregulation of phospho-Akt and consecutive RGC rescue. We conclude that in MOG-EAE the PI3-K/Akt pathway has an important influence on RGC survival under systemic treatment with Epo.  相似文献   

16.
Cytotoxic lymphocytes induce apoptosis of target cells by degranulating and releasing the serine protease granzyme B and the pore forming protein perforin. Granzyme B is an aspartic acid protease similar to members of the interleukin 1beta converting enzyme (ICE) family. We review the evidence for the participation members of the ICE family of proteases and cdc2 kinase in granzyme B-induced apoptosis.  相似文献   

17.
18.
Antagonists of alphavbeta3 and alphavbeta5 disrupt angiogenesis in response to bFGF and VEGF, respectively. Here, we show that these alphav integrins differentially contribute to sustained Ras-extracellular signal-related kinase (Ras-ERK) signaling in blood vessels, a requirement for endothelial cell survival and angiogenesis. Inhibition of FAK or alphavbeta5 disrupted VEGF-mediated Ras and c-Raf activity on the chick chorioallantoic membrane, whereas blockade of FAK or integrin alphavbeta3 had no effect on bFGF-mediated Ras activity, but did suppress c-Raf activation. Furthermore, retroviral delivery of active Ras or c-Raf promoted ERK activity and angiogenesis, which anti-alphavbeta5 blocked upstream of Ras, whereas anti-alphavbeta3 blocked downstream of Ras, but upstream of c-Raf. The activation of c-Raf by bFGF/alphavbeta3 not only depended on FAK, but also required p21-activated kinase-dependent phosphorylation of serine 338 on c-Raf, whereas VEGF-mediated c-Raf phosphorylation/activation depended on Src, but not Pak. Thus, integrins alphavbeta3 and alphavbeta5 differentially regulate the Ras-ERK pathway, accounting for distinct vascular responses during two pathways of angiogenesis.  相似文献   

19.
Activation of ion transport pathways by changes in cell volume.   总被引:9,自引:0,他引:9  
Swelling-activated K+ and Cl- channels, which mediate RVD, are found in most cell types. Prominent exceptions to this rule include red cells, which together with some types of epithelia, utilize electroneutral [K(+)-Cl-] cotransport for down-regulation of volume. Shrinkage-activated Na+/H+ exchange and [Na(+)-K(+)-2 Cl-] cotransport mediate RVI in many cell types, although the activation of these systems may require special conditions, such as previous RVD. Swelling-activated K+/H+ exchange and Ca2+/Na+ exchange seem to be restricted to certain species of red cells. Swelling-activated calcium channels, although not carrying sufficient ion flux to contribute to volume changes may play an important role in the activation of transport pathways. In this review of volume-activated ion transport pathways we have concentrated on regulatory phenomena. We have listed known secondary messenger pathways that modulate volume-activated transporters, although the evidence that volume signals are transduced via these systems is preliminary. We have focused on several mechanisms that might function as volume sensors. In our view, the most important candidates for this role are the structures which detect deformation or stretching of the membrane and the skeletal filaments attached to it, and the extraordinary effects that small changes in concentration of cytoplasmic macromolecules may exert on the activities of cytoplasmic and membrane enzymes (macromolecular crowding). It is noteworthy that volume-activated ion transporters are intercalated into the cellular signaling network as receptors, messengers and effectors. Stretch-activated ion channels may serve as receptors for cell volume itself. Cell swelling or shrinkage may serve a messenger function in the communication between opposing surfaces of epithelia, or in the regulation of metabolic pathways in the liver. Finally, these transporters may act as effector systems when they perform regulatory volume increase or decrease. This review discusses several examples in which relatively simple methods of examining volume regulation led to the discovery of transporters ultimately found to play key roles in the transmission of information within the cell. So, why volume? Because it's functionally important, it's relatively cheap (if you happened to have everything else, you only need some distilled water or concentrated salt solution), and since it involves many disciplines of experimental biology, it's fun to do.  相似文献   

20.
Kaposi's sarcoma herpesvirus (KSHV) is the eighth human herpesvirus discovered in 1994 from Kaposi's sarcoma lesion of an AIDS patient. The strong molecular and epidemiological links associating KSHV with Kaposi's sarcoma and certain lymphoproliferative disorders indicate that KSHV is required for the development of these malignancies. Although KSHV is equipped to manipulate and deregulate several cellular signaling pathways, it is not yet understood how this leads to cell transformation. Profound understanding of the interplay of viral and cellular factors in KSHV-infected cells will provide valuable information on the mechanisms of viral tumorigenesis and enable development of efficient targeted therapies for virus-induced cancers. This review focuses on the cellular signaling pathways that KSHV gene products impinge on and discusses their putative contribution to tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号