首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dystroglycan (DG) complex, composed of alphaDG and betaDG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of betaDG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of betaDG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of betaDG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of betaDG specifically and (2) that MMP-2 and MMP-9 may be involved in this process.  相似文献   

2.
Tissue-type plasminogen activator (tPA), a serine protease well known for generating plasmin, has been demonstrated to induce matrix metalloproteinase-9 (MMP-9) gene expression and protein secretion in renal interstitial fibroblasts. However, exactly how tPA transduces its signal into the nucleus to control gene expression is unknown. This study investigated the mechanism by which tPA induces MMP-9 gene expression. Both wild-type and non-enzymatic mutant tPA were found to induce MMP-9 expression in rat kidney interstitial fibroblasts (NRK-49F), indicating that the actions of tPA are independent of its proteolytic activity. tPA bound to the low density lipoprotein receptor-related protein-1 (LRP-1) in NRK-49F cells, and this binding was competitively abrogated by the LRP-1 antagonist, the receptor-associated protein. In mouse embryonic fibroblasts (PEA-13) lacking LRP-1, tPA failed to induce MMP-9 expression. Furthermore, tPA induced rapid tyrosine phosphorylation on the beta subunit of LRP-1, which was followed by the activation of Mek1 and its downstream Erk-1 and -2. Blockade of Erk-1/2 activation by the Mek1 inhibitor abolished MMP-9 induction by tPA in NRK-49F cells. Conversely, overexpression of constitutively activated Mek1 induced Erk-1/2 phosphorylation and MMP-9 expression. In mouse obstructed kidney, tPA, LRP-1, and MMP-9 were concomitantly induced in the renal interstitium. Collectively, these results suggest that besides its classical proteolytic activity, tPA acts as a cytokine that binds to the cell membrane receptor LRP-1, induces its tyrosine phosphorylation, and triggers intracellular signal transduction, thereby inducing specific gene expression in renal interstitial fibroblasts.  相似文献   

3.
Matrix metalloproteinase-9 (MMP-9) may play a critical catalytic role in tissue remodeling in vivo, but it is secreted by cells as a stable, inactive zymogen, pro-MMP-9, and requires activation for catalytic function. A number of proteolytic enzymes activate pro-MMP-9 in vitro, but the natural activator(s) of MMP-9 is unknown. To examine MMP-9 activation in a cellular setting we employed cultures of human tumor cells (MDA-MB-231 breast carcinoma cells) that were induced to produce MMP-9 over a 200-fold concentration range (0.03-8.1 nM). The levels of tissue inhibitors of metalloproteinase (TIMPs) in the induced cultures remain relatively constant at 1-4 nM. Quantitation of the zymogen/active enzyme status of MMP-9 in the MDA-MB-231 cultures indicates that even in the presence of potential activators, the molar ratio of endogenous MMP-9 to TIMP dictates whether pro-MMP-9 activation can progress. When the MMP-9/TIMP ratio exceeds 1.0, MMP-9 activation progresses, but through an interacting protease cascade involving plasmin and stromelysin 1 (MMP-3). Plasmin, generated by the endogenous urokinase-type plasminogen activator, is not an efficient activator of pro-MMP-9, neither the secreted pro-MMP-9 nor the very low levels of pro-MMP-9 associated with intact cells. Although plasmin can proteolytically process pro-MMP-9, this limited action does not yield an enzymatically active MMP-9, nor does it cause the MMP-9 to be more susceptible to activation. Plasmin, however, is very efficient at generating active MMP-3 (stromelysin-1) from exogenously added pro-MMP-3. The activated MMP-3 becomes a potent activator of the 92-kDa pro-MMP-9, yielding an 82-kDa species that is enzymatically active in solution and represents up to 50-75% conversion of the zymogen. The activated MMP-9 enhances the invasive phenotype of the cultured cells as their ability to both degrade extracellular matrix and transverse basement membrane is significantly increased following zymogen activation. That this enhanced tissue remodelling capability is due to the activation of MMP-9 is demonstrated through the use of a specific anti-MMP-9 blocking monoclonal antibody.  相似文献   

4.
The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-beta and tumor necrosis factor (TNF)-alpha. We dissected the mechanistic pathway for TNF-alpha induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-alpha, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-alpha, but not transforming growth factor-beta, down-regulated this inhibitor. The TNF-alpha-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor.  相似文献   

5.
Factor VII activating protease (FSAP) is associated with cardiovascular diseases and liver fibrosis. To understand the regulation of its proteolytic activity we have characterized recombinant FSAP-mutants over-expressed in HEK-293 cells. The secreted FSAP-protein concentration correlated inversely with the enzymatic activity of the FSAP-mutants. Over-expression of enzymatically active FSAP decreased cell viability, whereas inactive variants were expressed and secreted in adequate amounts. The naturally occurring G534E-variant exhibited reduced proteolytic activity. The ΔEGF-3 mutant showed diminished binding to and activation by heparin. Hence, regulation of FSAP activity is dependent on its EGF-3 domain and over-expression of active variants induces cell death.  相似文献   

6.
7.
MMP-9 (matrix metalloproteinase 9) plays a critical role in tumour progression. Although the biochemical properties of the secreted form of proMMP-9 are well characterized, little is known about the function and activity of cell surface-associated proMMP-9. We purified a novel 82 kDa species of proMMP-9 from the plasma membrane of THP-1 leukaemic cells, which has substantial differences from the secreted 94 kDa proMMP-9. The 82 kDa form was not detected in the medium even upon stimulation with a phorbol ester. It is truncated by nine amino acid residues at its N-terminus, lacks O-linked oligosaccharides present in the 94 kDa proMMP-9, but retains N-linked carbohydrates. Incubation of 94 kDa proMMP-9 with MMP-3 generated the well-known 82 kDa active form, but the 82 kDa proMMP-9 was converted into an active species of 35 kDa, which was also produced by autocatalytic processing in the absence of activating enzymes. The activated 35 kDa MMP-9 efficiently degraded gelatins, native collagen type IV and fibronectin. The enzyme was less sensitive to TIMP-1 (tissue inhibitor of metalloproteinase 1) inhibition with IC50 values of 82 nM compared with 1 nM for the 82 kDa active MMP-9. The synthetic MMP inhibitor GM6001 blocked the activity of both enzymes, with similar IC50 values below 1 nM. The 82 kDa proMMP-9 is also produced in HL-60 and NB4 leukaemic cell lines as well as ex vivo leukaemic blast cells. It is, however, absent from neutrophils and mononuclear cells isolated from peripheral blood of healthy individuals. Thus, the 82 kDa proMMP-9 expressed on the surface of malignant cells may escape inhibition by natural TIMP-1, thereby facilitating cellular invasion in vivo.  相似文献   

8.
Human soft tissue sarcoma (STS) is a highly lethal malignancy in which control of metastasis determines survival. Little is known about the molecular determinants of STS dissemination. Here, we show that human STS express high levels of matrix metalloproteinase-9 (MMP-9) and that MMP-9 expression levels correlate with sequence analysis-defined p53 mutational status. Reintroduction of wild-type p53 (wtp53) into mutant p53 STS cell lines decreased MMP-9 mRNA and protein levels, decreased zymography-assessed MMP-9 proteolytic activity, and decreased tumor cell invasiveness. Reintroduction of wtp53 into STS xenografts decreased tumor growth and MMP-9 protein expression. Luciferase reporter studies showed that reintroduction of wtp53 into mutant p53 STS cells decreased MMP-9 promoter activity. Deletion constructs of the MMP-9 promoter identified a region containing a p53-responsive element that lacked a p53 consensus binding site but did contain a nuclear factor-kappaB (NF-kappaB) site. Mutating this NF-kappaB binding site eliminated the wtp53-repressive effect. Electrophoretic mobility shift assays confirmed decreased NF-kappaB binding in STS cells in the presence of wtp53. Our findings suggest a role for MMP-9 in STS progression and expand the role of p53 in molecular control of STS growth and metastasis. Therapeutic interventions in human STS targeting MMP-9 activity directly or via reintroduction of wtp53 merit further investigation.  相似文献   

9.
Matrix metalloproteases (MMPs) are Zn-containing endopeptidases involved in the degradation of extracellular matrix components and are typically secreted in a latent (pro-MMP) form and activated either by proteolytic or oxidative disruption of a conserved cysteine switch. Several recent studies have suggested that nitric oxide (NO) can contribute to the activation of MMPs, but the mechanisms involved are incompletely understood. We investigated the ability of NO to regulate the activation of (pro)MMP-9 using a variety of NO-donor compounds and characterized modifications of the cysteine switch using a synthetic peptide (PRCGVPDLGR) representing the cysteine switch domain of MMP-9. Among the NO-donors used, only S-nitrosocysteine (SNOC) was found to be capable of modest activation of proMMP-9, but S-nitrosoglutathione (GSNO) or the NONOates, DEA-NO, SPER-NO, or DETA-NO, were ineffective. In fact, high concentrations of DETA-NO were found to inhibit MMP-9 activity, presumably by direct interaction with the active-site Zn (2+). Analysis of chemical modifications within the Cys-containing peptide, PRCGVPDLGR, revealed rapid and transient S-nitrosylation by SNOC and GSNO, and formation of mixed disulfides and dimerized peptide as major final products. Similarly, NONOates induced transient S-nitrosylation and primarily peptide dimerization. Coordination of the peptide Cys with a synthetic Zn (2+) complex, to more closely mimic the structure of the active site in proMMP-9, reduced peptide nitrosylation and oxidation by NONOates, but enhanced peptide nitrosylation by SNOC and GSNO. Collectively, our results demonstrate that NO is incapable of directly activating proMMP-9 and that S-nitrosylation of MMP-9 propeptide by NO-donors is unrelated to their ability to regulate MMP-9 activity.  相似文献   

10.
We have used site-directed in vitro mutagenesis to alter the codon ACT of human apoCIII gene, specifying Thr-74, to GCT (Ala-74). The normal and mutant apoCIII genes were then placed under the control of the mouse metallothionein 1 promoter in a bovine papilloma virus vector and were used for cell transfection and selection of stable cell lines. Blotting analysis of RNA isolated from several independent cell clones showed that both the normal and mutant genes produced apoCIII mRNA in amounts larger than that found in human fetal liver. Pulse-chase analysis of cell clones expressing the normal and mutant apoCIII genes showed that only the normal apoCIII is modified intracellularly to produce a disialated form (apoCIIIs2). Cell clones expressing the normal apoCIII gene secrete exclusively the disialated form, whereas those expressing the mutant gene secrete the unmodified form. The amount of mutant apoCIII protein produced by C127 cell clones expressing the mutant gene was reduced as compared to that produced by the control cells. Density gradient ultracentrifugation analysis of the secreted apoCIII showed that the flotation properties of the secreted normal and mutant proteins were similar. These findings suggest that the intracellular glycosylation of apoCIII is not required for its intracellular transport and secretion. Furthermore, lack of glycosylation has no effect on the relative affinities of apoCIII for plasma very low density lipoproteins and high density lipoproteins.  相似文献   

11.
Located within the perisinusoidal space and surrounded by extracellular matrix, hepatic stellate cells (HSC) undergo phenotypic trans-differentiation called "myofibroblastic activation" in liver fibrogenesis. This study investigated the regulation of interleukin-1 (IL-1alpha) on expression of matrix metalloproteinases (MMPs) by HSC grown in three-dimensional extracellular matrix and the role of MMPs in HSC activation. To recapitulate the in vivo "quiescent" state of HSC, the isolated rat HSC were grown in three-dimensional Matrigel or type I collagen. Stimulation with IL-1alpha caused robust induction of pro-MMP-9 (the precursor of matrix metalloproteinase-9) when HSC were cultured in these matrices. IL-1alpha induced a conversion of the pro-MMP-9 to the active form only when the cells were in type I collagen. In collagen lattices, IL-1alpha provoked activation of HSC with induction of MMP-13, MMP-3, and breakdown of the matrix. The HSC activation was completely prevented by a treatment of the cells with tissue inhibitor of metalloproteinase-1 or deprivation of MMP-9. Once fully activated, HSC failed to express MMP-9 and showed attenuated induction of MMP-13 and MMP-3. Further, we demonstrated colocalization of alpha-smooth muscle actin and MMP-9 in a subpopulation of HSC in human fibrotic liver tissues. Thus, this study provides a novel model to enlighten the role of MMPs, particularly that of MMP-9, in HSC activation regulated by a specific cytokine in liver fibrogenesis.  相似文献   

12.
Matrix metalloproteinase-9 (MMP-9) is up-regulated in macrophages in various human cancer types. In human colon cancer, MMP-9 is expressed in a macrophage subpopulation located at the tumor edge, indicating a specific induction of MMP-9 in macrophages in direct association with cancer invasion. To test whether MMP-9 is also induced in tumor edge macrophages in metastases from colorectal adenocarcinomas, we have compared the expression pattern of MMP-9 in primary colorectal adenocarcinomas (n = 15) with that in liver metastases (n = 15) and local lymph node metastases (n = 7) from the same patients by in situ hybridization and immunohistochemistry. In all the colorectal adenocarcinomas, the expression of MMP-9 mRNA and immunoreactivity in macrophages was located at the invasive front. In contrast, only 3 of the 15 liver metastases had MMP-9 mRNA and immunoreactivity at the periphery, and this expression was confined to small foci of macrophages located either among lymphocytes or in a dense desmoplastic stroma. Expression of MMP-9 mRNA and immunoreactivity was in all liver metastases seen in macrophages located in the lumen of malignant glandular structures and in central necrotic tissue. In all the 7 lymph node metastases, MMP-9 mRNA and immunoreactivity was seen in macrophages located in the stromal tissue surrounding the metastases. We conclude that MMP-9 is not up-regulated in tumor edge macrophages in liver metastases like in their primary tumor and local lymph node metastases, suggesting that disseminating colorectal cancer cells can adopt alternative proteolytic mechanisms for invasion depending on the local microenvironment.  相似文献   

13.
The role of matrix metalloproteinases (MMPs) in cell migration was studied by measuring cell growth, migration, and production of MMP-2 and -9 in oral mucosal and skin keratinocytes cultured in the presence of synthetic MMP inhibitors. MMP-2 was the major gelatinolytic MMP produced by these cells while MMP-9 was produced at a low basal level. Inhibitor effects on MMP-9 production were therefore studied in keratinocytes stimulated by tumor necrosis factor alpha (TNFalpha). Tetracycline analogues at concentrations that inhibited the production of MMP-2 but not MMP-9 were able to drastically inhibit migration of both mucosal and skin keratinocytes. Tetracycline analogues also inhibited keratinocyte growth, an effect not found for the other inhibitors tested. Heterocyclic carbonate-derived compounds (LWs) that inhibited MMP-9 but not MMP-2 production had no effect on cell migration. Batimastat, a potent MMP inhibitor, did not have any effect on MMP production or cell growth but did inhibit keratinocyte migration. Tumor growth factor beta (TGFbeta) increased keratinocyte migration as well as both cell-associated and secreted MMP-2 production in wounded cell cultures. The secreted enzyme was partially converted into an active form. In this model batimastat totally blocked TGFbeta-promoted keratinocyte migration. Immunostaining of keratinocytes advancing into the wound revealed that MMP-2 was localized in extracellular matrix contactlike structures against the endogenously produced laminin-5-rich matrix. MMP-9 was localized diffusely along the cell membranes. Using in situ hybridization we observed that in chronically inflamed human gingiva MMP-2 is expressed in epithelium extending into subepithelial connective tissue. These results suggest that MMP-2 plays a specific role in epithelial migration, possibly by detaching the advancing cells from the pericellular matrix or by activating other MMPs.  相似文献   

14.
15.
Tumor progression is characterized by loss of cell adhesion and increase of invasion and metastasis. The cell adhesion molecule E-cadherin is frequently down-regulated or mutated in tumors. In addition to down-regulation of cell adhesion, degradation of the extracellular matrix by matrix metalloproteinases is necessary for tumor cell spread. To investigate a possible link between E-cadherin and matrix metalloproteinase 3 (MMP-3), we examined expression of MMP-3 in human MDA-MB-435S cells transfected with wild-type (wt) or three different tumor-associated mutant E-cadherin variants with alterations in exons 8 or 9, originally identified in gastric carcinoma patients. In the presence of wt E-cadherin, the MMP-3 protein level was decreased in cellular lysates and in the supernatant where a secreted form of the protein is detectable. Down-regulation of MMP-3 was not found in MDA-MB-435S transfectants expressing mutant E-cadherin variants which indicates that E-cadherin mutations interfere with the MMP-3 suppressing function of E-cadherin. The mechanism of regulation of MMP-3 by E-cadherin is presently not clear. We have previously found that cell motility is enhanced by expression of the mutant E-cadherin variants used in this study. Here, we found that application of the synthetic inhibitor of MMP-3 NNGH and small interfering RNA (siRNA) directed against MMP-3 reduce mutant E-cadherin-enhanced cell motility. Taken together, our results point to a functional link between MMP-3 and E-cadherin. MMP-3 is differentially regulated by expression of wt or mutant E-cadherin. On the other hand, MMP-3 plays a role in the enhancement of cell motility by mutant E-cadherin. Both observations may be highly relevant for tumor progression since they concern degradation of the extracellular matrix and tumor cell spread.  相似文献   

16.
Hepatic stellate cells (HSCs) undergo myofibroblastic trans-differentiation in liver fibrogenesis. We previously showed that dual stimulation with three-dimensional type-I collagen and interleukin-1 (IL-1) synergistically induces HSC trans-differentiation in a manner dependent on the activation of matrix metallopreinase-9 (MMP-9). The present study is aimed to determine the mechanism of MMP-9 activation in this model. The pro-MMP-9-converting activities expressed by trans-differentiating HSCs are characterized as secreted factors that are sensitive to MMP inhibitor and have apparent molecular masses of 50 and 25 kDa. This is in sharp contrast to the pro-MMP-9 activator from mouse and human skin, which is a chymotrypsin-like proteinase. Among multiple MMPs induced in HSCs by the dual stimulation, MMP-13 is most conspicuously up-regulated and meets all criteria as the pro-MMP-9 activator. HSC cultured in three-dimensional type-I collagen, but not in Matrigel, IL-1 induces expression of MMP-13 and its matured form at 50 and 25 kDa, respectively. In vitro reconstitution experiment proves that MMP-13, but not its zymogen, activates pro-MMP-9. Further, short hairpin RNA targeting MMP-13 abolishes pro-MMP-9 activation and HSC trans-differentiation. We further demonstrate that pro-MMP-13 activation is facilitated with a membrane-associated factor, inhibited with tissue inhibitor of metalloproteinase-2, and abolished with short hairpin RNA against MMP-14. Moreover, pro-MMP-13 is also activated by a secreted factor, which is absorbed by gelatin-Sepharose and reconstituted with MMP-9. Thus, IL-1-induced trans-differentiation of HSCs in three-dimensional extracellular matrix is facilitated by an MMP activation cascade (MMP-14 > MMP-13 > MMP-9) and a positive feedback loop of MMP-9 > MMP-13, suggesting their critical roles in liver injury and repair.  相似文献   

17.
In the present study, we demonstrate that erythropoietin (Epo) induces the expression and the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) in a time- and dose-dependent manner in Epo-dependent cell line UT-7 cells and in normal human erythroid progenitor cells from cord blood (CD36+) and required de novo protein synthesis. TIMP-1 was not expressed in the absence of Epo. Inhibition of the mitogen-activated protein kinase pathway by the specific inhibitors PD98059 and U0126 and of phosphatidylinositol 3-kinase by LY294002, strongly inhibited Epo-induced TIMP-1 expression and secretion. In the absence of Epo, both latent and active forms of matrix metalloproteinase-9 (MMP-9) were secreted into media. Upon Epo stimulation, MMP-9 and pro-MMP-9 secretion was inhibited in a dose-dependent manner parallel to TIMP-1 induction. The addition of PD98059, U0126, and LY294002 in the presence of Epo restored MMP-9 production in UT-7 and CD36+ cells. Our findings strongly suggest an inversely coordinated regulation of the TIMP-1 gene and MMP-9 production by Epo via mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways.  相似文献   

18.
In this study, the cell-associated and extracellular peptidases of Trypanosoma cruzi grown in modified Roitman’s complex (MRC) medium were analyzed by measuring peptidase activity in gelatin-containing zymograms. Our results showed that the cell-associated peptidases as well as peptidases extracellularly released by T. cruzi displayed two distinct proteolytic classes: cysteine and metallopeptidase activities. The major cysteine peptidase, cruzipain, synthesized by T. cruzi cells was detected in cellular parasite content, as a 50 kDa reactive polypeptide, after probing with anti-cruzipain antibody. In addition, metallo-type peptidases belonging to the matrix metallopeptidase-9 (MMP-9) family were revealed, after Western blotting, as a 97 kDa protein band in cellular extract and an 85 kDa polypeptide in both cellular and secreted parasite extracts. The MMP-9-like activity present in cells and spent culture medium was immunoprecipitated by an anti-MMP-9 polyclonal antibody. The surface location of MMP-9-like proteins in T. cruzi was also evidenced by means of flow cytometry analysis. Furthermore, doxycycline that has direct MMP-9 inhibiting properties in vitro, inhibited MMP-9-like activities in gel zymography, immunoprecipitation and flow cytometry analyses. This is the first report of the presence of MMP-9-like molecules in T. cruzi. The presence of a matrix extracellular-degrading enzyme may play a role in the T. cruzi-host cell interaction, making this enzyme a potential target for future drug development against this pathogenic trypanosomatid.  相似文献   

19.
20.
Matrix metalloproteinases (MMPs) are zinc endopeptidases that degrade extracellular matrix (ECM) components during normal and pathogenic tissue remodeling. Inappropriate expression of these enzymes contributes to the development of vascular pathology, including atherosclerosis. MMP-9 is expressed in its active form in atherosclerotic lesions and is believed to play an important role in vascular remodeling, smooth muscle cell migration, and plaque instability. We demonstrate here that the liver X receptors (LXRs) LXRalpha and LXRbeta inhibit basal and cytokine-inducible expression of MMP-9. Treatment of murine peritoneal macrophages with the synthetic LXR agonists GW3965 or T1317 reduces MMP-9 mRNA expression and blunts its induction by pro-inflammatory stimuli including lipopolysaccharide, interleukin-1beta, and tumor necrosis factor alpha. In contrast, macrophage expression of MMP-12 and MMP-13 is not altered by LXR ligands. We further show that the ability of LXR ligands to regulate MMP-9 expression is strictly receptor-dependent and is not observed in macrophages obtained from LXRalphabeta null mice. Analysis of the 5'-flanking region of the MMP-9 gene indicates that LXR/RXR heterodimers do not bind directly to the MMP-9 promoter. Rather, activation of LXRs represses MMP-9 expression, at least in part through antagonism of the NFkappaB signaling pathway. These observations identify the regulation of macrophage MMP-9 expression as a mechanism whereby activation of LXRs may impact macrophage inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号