首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Drosophila jing gene encodes a zinc finger protein required for the differentiation and survival of embryonic CNS midline and tracheal cells. We show that there is a functional relationship between jing and the Egfr pathway in the developing CNS midline and trachea. jing function is required for Egfr pathway gene expression and MAPK activity in both the CNS midline and trachea. jing over-expression effects phenocopy those of the Egfr pathway and require Egfr pathway function. Activation of the Egfr pathway in loss-of-function jing mutants partially rescues midline cell loss. Egfr pathway genes and jing show dominant genetic interactions in the trachea and CNS midline. Together, these results show that jing regulates signal transduction in developing midline and tracheal cells.  相似文献   

3.
The role of phospholipids in the regulation of membrane trafficking and signaling is largely unknown. Phosphatidylcholine (PC) is a main component of the plasma membrane. Mutants in the Drosophila phosphocholine cytidylyltransferase 1 (CCT1), the rate-limiting enzyme in PC biosynthesis, show an altered phospholipid composition with reduced PC and increased phosphatidylinositol (PI) levels. Phenotypic features of dCCT1 indicate that the enzyme is not required for cell survival, but serves a role in endocytic regulation. CCT1- cells show an increase in endocytosis and enlarged endosomal compartments, whereas lysosomal delivery is unchanged. As a consequence, an increase in endocytic localization of EGF receptor (Egfr) and Notch is observed, and this correlates with a reduction in signaling strength and leads to patterning defects. A further link between PC/PI content, endocytosis, and signaling is supported by genetic interactions of dCCT1 with Egfr, Notch, and genes affecting endosomal traffic.  相似文献   

4.
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

5.
J. V. Price  E. D. Savenye  D. Lum    A. Breitkreutz 《Genetics》1997,147(3):1139-1153
The Drosophila epidermal growth factor receptor (EGFR) is a key component of a complex signaling pathway that participates in multiple developmental processes. We have performed an F(1) screen for mutations that cause dominant enhancement of wing vein phenotypes associated with mutations in Egfr. With this screen, we have recovered mutations in Hairless (H), vein, groucho (gro), and three apparently novel loci. All of the E(Egfr)s we have identified show dominant interactions in transheterozygous combinations with each other and with alleles of N or Su(H), suggesting that they are involved in cross-talk between the N and EGFR signaling pathways. Further examination of the phenotypic interactions between Egfr, H, and gro revealed that reductions in Egfr activity enhanced both the bristle loss associated with H mutations, and the bristle hyperplasia and ocellar hypertrophy associated with gro mutations. Double mutant combinations of Egfr and gro hypomorphic alleles led to the formation of ectopic compound eyes in a dosage sensitive manner. Our findings suggest that these E(Egfr)s represent links between the Egfr and Notch signaling pathways, and that Egfr activity can either promote or suppress Notch signaling, depending on its developmental context.  相似文献   

6.
The Cbl family of proteins downregulate epidermal growth factor receptor (Egfr) signaling via receptor internalization and destruction. These proteins contain two functional domains, a RING finger domain with E3 ligase activity, and a proline rich domain mediating the formation of protein complexes. The Drosophila cbl gene encodes two isoforms, D-CblS and D-CblL. While both contain a RING finger domain, the proline rich domain is absent from D-CblS. We demonstrate that expression of either isoform is sufficient to rescue both the lethality of a D-cbl null mutant and the adult phenotypes characteristic of Egfr hyperactivation, suggesting that both isoforms downregulate Egfr signaling. Interestingly, targeted overexpression of D-CblL, but not D-CblS, results in phenotypes characteristic of reduced Egfr signaling and suppresses the effect of constitutive Egfr activation. The level of D-CblL was significantly correlated with the phenotypic severity of reduced Egfr signaling, suggesting that D-CblL controls the efficiency of downregulation of Egfr signaling. Furthermore, reduced dynamin function suppresses the effects of D-CblL overexpression in follicle cells, suggesting that D-CblL promotes internalization of activated receptors. D-CblL is detected in a punctate cytoplasmic pattern, whereas D-CblS is mainly localized at the follicle cell cortex. Therefore, D-CblS and D-CblL may downregulate Egfr through distinct mechanisms.  相似文献   

7.
EGF-receptor ligands act as chemoattractants for migrating epithelial cells during organogenesis and wound healing. We present evidence that Rhomboid 3/EGF signalling, which originates from the midline of the Drosophila ventral nerve cord, repels tracheal ganglionic branches and prevents them from crossing it. rho3 acts independently from the main midline repellent Slit, and originates from a different sub-population of midline cells: the VUM neurons. Expression of dominant-negative Egfr or Ras induces midline crosses, whereas activation of the Egfr or Ras in the leading cell of the ganglionic branch can induce premature turns away from the midline. This suggests that the level of Egfr intracellular signalling, rather than the asymmetric activation of the receptor on the cell surface, is an important determinant in ganglionic branch repulsion. We propose that Egfr activation provides a necessary switch for the interpretation of a yet unknown repellent function of the midline.  相似文献   

8.
9.
Sprouty, an intracellular inhibitor of Ras signaling   总被引:21,自引:0,他引:21  
Casci T  Vinós J  Freeman M 《Cell》1999,96(5):655-665
Sprouty was identified in a genetic screen as an inhibitor of Drosophila EGF receptor signaling. The Egfr triggers cell recruitment in the eye, and sprouty- eyes have excess photoreceptors, cone cells, and pigment cells. Sprouty's function is, however, more widespread. We show that it also interacts genetically with the receptor tyrosine kinases Torso and Sevenless, and it was first discovered through its effect on FGF receptor signaling. In contrast to an earlier proposal that Sprouty is extracellular, we show by biochemical analysis that Sprouty is an intracellular protein, associated with the inner surface of the plasma membrane. Sprouty binds to two intracellular components of the Ras pathway, Drk and Gap1. Our results indicate that Sprouty is a widespread inhibitor of Ras pathway signal transduction.  相似文献   

10.
Epidermal Growth Factor-receptor (Egfr) signaling is evolutionarily conserved and controls a variety of different cellular processes. In Drosophila these include proliferation, patterning, cell-fate determination, migration and survival. Here we provide evidence for a new role of Egfr signaling in controlling ommatidial rotation during planar cell polarity (PCP) establishment in the Drosophila eye. Although the signaling pathways involved in PCP establishment and photoreceptor cell-type specification are beginning to be unraveled, very little is known about the associated 90 degrees rotation process. One of the few rotation-specific mutations known is roulette (rlt) in which ommatidia rotate to a random degree, often more than 90 degrees. Here we show that rlt is a rotation-specific allele of the inhibitory Egfr ligand Argos and that modulation of Egfr activity shows defects in ommatidial rotation. Our data indicate that, beside the Raf/MAPK cascade, the Ras effector Canoe/AF6 acts downstream of Egfr/Ras and provides a link from Egfr to cytoskeletal elements in this developmentally regulated cell motility process. We provide further evidence for an involvement of cadherins and non-muscle myosin II as downstream components controlling rotation. In particular, the involvement of the cadherin Flamingo, a PCP gene, downstream of Egfr signaling provides the first link between PCP establishment and the Egfr pathway.  相似文献   

11.
Syntrophins are components of the dystrophin glycoprotein complex (DGC), which is encoded by causative genes of muscular dystrophies. The DGC is thought to play roles not only in linking the actin cytoskeleton to the extracellular matrix, providing stability to the cell membrane, but also in signal transduction. Because of their binding to a variety of different molecules, it has been suggested that syntrophins are adaptor proteins recruiting signaling proteins to membranes and the DGC. However, critical roles in vivo remain elusive. Drosophila Syntrophin-2 (Syn2) is an orthologue of human γ1/γ2-syntrophins. Western immunoblot analysis here showed Syn2 to be expressed throughout development, with especially high levels in the adult head. Morphological aberrations were observed in Syn2 knockdown adult flies, with lack of retinal elongation and malformation of rhabdomeres. Furthermore, Syn2 knockdown flies exhibited excessive apoptosis in third instar larvae and alterations in the actin localization in the pupal retinae. Genetic crosses with a collection of Drosophila deficiency stocks allowed us to identify seven genomic regions, deletions of which caused enhancement of the rough eye phenotype induced by Syn2 knockdown. This information should facilitate identification of Syn2 regulators in Drosophila and clarification of roles of Syn2 in eye development.  相似文献   

12.
The Drosophila embryonic Central Nervous System (CNS) develops from the ventrolateral region of the embryo, the neuroectoderm. Neuroblasts arise from the neuroectoderm and acquire unique fates based on the positions in which they are formed. Previous work has identified six genes that pattern the dorsoventral axis of the neuroectoderm: Drosophila epidermal growth factor receptor (Egfr), ventral nerve cord defective (vnd), intermediate neuroblast defective (ind), muscle segment homeobox (msh), Dichaete and Sox-Neuro (SoxN). The activities of these genes partition the early neuroectoderm into three parallel longitudinal columns (medial, intermediate, lateral) from which three distinct columns of neural stem cells arise. Most of our knowledge of the regulatory relationships among these genes derives from classical loss of function analyses. To gain a more in depth understanding of Egfr-mediated regulation of vnd, ind and msh and investigate potential cross-regulatory interactions among these genes, we combined loss of function with ectopic activation of Egfr activity. We observe that ubiquitous activation of Egfr expands the expression of vnd and ind into the lateral column and reduces that of msh in the lateral column. Through this work, we identified the genetic criteria required for the development of the medial and intermediate column cell fates. We also show that ind appears to repress vnd, adding an additional layer of complexity to the genetic regulatory hierarchy that patterns the dorsoventral axis of the CNS. Finally, we demonstrate that Egfr and the genes of the achaete-scute complex act in parallel to regulate the individual fate of neural stem cells.  相似文献   

13.
14.
In addition to being energy generators, mitochondria control many cellular processes including apoptosis. They are dynamic organelles, and the machinery of membrane fusion and fission is emerging as a key regulator of mitochondrial biology. We have recently identified a novel and conserved mitochondrial rhomboid intramembrane protease that controls membrane fusion in Saccharomyces cerevisiae by processing the dynamin-like GTPase, Mgm1, thereby releasing it from the membrane. The genetics of mitochondrial membrane dynamics has until now focused primarily on yeast. Here we show that in Drosophila, the mitochondrial rhomboid (Rhomboid-7) is required for mitochondrial fusion during fly spermatogenesis and muscle maturation, both tissues with unusual mitochondrial dynamics. We also find that mutations in Drosophila optic atrophy 1-like (Opa1-like), the ortholog of yeast mgm1, display similar phenotypes, suggesting a shared role for Rhomboid-7 and Opa1-like, as with their yeast orthologs. Loss of human OPA1 leads to dominant optic atrophy, a mitochondrial disease leading to childhood onset blindness. rhomboid-7 mutant flies have severe neurological defects, evidenced by compromised signaling across the first visual synapse, as well as light-induced neurodegeneration of photoreceptors that resembles the human disease. rhomboid-7 mutant flies also have a greatly reduced lifespan.  相似文献   

15.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila.  相似文献   

16.
Pai LM  Barcelo G  Schüpbach T 《Cell》2000,103(1):51-61
During Drosophila oogenesis, asymmetrically localized Gurken activates the EGF receptor (Egfr) and determines dorsal follicle cell fates. Using a mosaic follicle cell system we have identified a mutation in the D-cbl gene which causes hyperactivation of the Egfr pathway. Cbl proteins are known to downregulate activated receptors. We find that the abnormal Egfr activation is ligand dependent. Our results show that the precise regulation of Egfr activity necessary to establish different follicle cell fates requires two levels of control. The localized ligand Gurken activates Egfr to different levels in different follicle cells. In addition, Egfr activity has to be repressed through the activity of D-cbl to ensure the absence of signaling in the ventral most follicle cells.  相似文献   

17.
Patterning of the insect eggshell is an excellent system for exploring the molecular basis of phenotypic variation. In Drosophila melanogaster, two dorsal-anterior respiratory appendages are produced in response to signaling through the Epidermal growth factor receptor (Egfr). Previous work implicates Egfr pathway function in both intraspecific variation for dorsal appendage spacing (DAS) on the eggshell, as well as interspecific differences in dorsal appendage number and location. To test the hypothesis that genetic variation in Egfr contributes to variation in eggshell patterning, we have made use of naturally occurring intraspecific variation for DAS as a model quantitative trait. We found that there is substantial segregating genetic variation for DAS in D. melanogaster, and have tested for associations with 289 common polymorphisms in the Egfr locus. A marginal association was seen with two polymorphic sites in Egfr; however, we failed to replicate these findings in a second population, or in a modified quantitative complementation test designed to specifically test the effects of the putative polymorphisms. Therefore, we conclude that the polymorphisms we have identified in Egfr do not contribute to variation in DAS, and further work is required to understand the genetic architecture of this trait.  相似文献   

18.
The dystrophin complex is a multimolecular membrane-associated protein complex whose defects underlie many forms of muscular dystrophy. The dystrophin complex is postulated to function as a structural element that stabilizes the cell membrane by linking the contractile apparatus to the extracellular matrix. A better understanding of how this complex is organized and localized will improve our knowledge of the pathogenic mechanisms of diseases that involve the dystrophin complex. In a Caenorhabditis elegans genetic study, we demonstrate that CTN-1/α-catulin, a cytoskeletal protein, physically interacts with DYB-1/α-dystrobrevin (a component of the dystrophin complex) and that this interaction is critical for the localization of the dystrophin complex near dense bodies, structures analogous to mammalian costameres. We further show that in mouse α-catulin is localized at the sarcolemma and neuromuscular junctions and interacts with α-dystrobrevin and that the level of α-catulin is reduced in α-dystrobrevin-deficient mouse muscle. Intriguingly, in the skeletal muscle of mdx mice lacking dystrophin, we discover that the expression of α-catulin is increased, suggesting a compensatory role of α-catulin in dystrophic muscle. Together, our study demonstrates that the interaction between α-catulin and α-dystrobrevin is evolutionarily conserved in C. elegans and mammalian muscles and strongly suggests that this interaction contributes to the integrity of the dystrophin complex.  相似文献   

19.
echinoid (ed) encodes an immunoglobulin domain-containing cell adhesion molecule that negatively regulates the Egfr signaling pathway during Drosophila photoreceptor development. We show a novel function of Ed, i.e. the restriction of the number of notum bristles that arise from a proneural cluster. Thus, loss-of-function conditions for ed give rise to the development of extra macrochaetae near the extant ones and increase the density of microchaetae. Analysis of ed mosaics indicates that extra sensory organ precursors (SOPs) arise from proneural clusters of achaete-scute expression in a cell-autonomous way. ed embryos also exhibit a neurogenic phenotype. These phenotypes suggest a functional relation between ed and the Notch (N) pathway. Indeed, loss-of-function of ed reduces the expression of the N pathway effector E(spl)m8 in proneural clusters. Moreover, combinations of moderate loss-of-function conditions for ed and for different components of the N pathway show clear synergistic interactions manifested as strong neurogenic bristle phenotypes. We conclude that Ed is not essential for, but it facilitates, N signaling. It is known that the N and Egfr pathways act antagonistically in bristle development. Consistently, we find that Ed also antagonizes the bristle-promoting activity of the Egfr pathway, either by the enhancement of N signalling or, similar to the eye, by a more direct action on the Egfr pathway.  相似文献   

20.
Drosophila Dystrophin is required for integrity of the musculature   总被引:1,自引:0,他引:1  
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. The highly conserved dystrophin gene encodes a number of protein isoforms. The Dystrophin protein is part of a large protein assembly, the Dystrophin glycoprotein complex, which stabilizes the muscle membrane during contraction and acts as a scaffold for signaling molecules. How the absence of Dystrophin results in the onset of muscular dystrophy remains unclear. Here, we have used transgenic RNA interference to examine the roles of the Drosophila Dystrophin isoforms in muscle. We previously reported that one of the Drosophila Dystrophin orthologs, the DLP2 isoform, is not required to maintain muscle integrity, but plays a role in neuromuscular homeostasis by regulating neurotransmitter release. In this report, we show that reduction of all Dystrophin isoform expression levels in the musculature does not apparently affect myogenesis or muscle attachment, but results in progressive muscle degeneration in larvae and adult flies. We find that a recently identified Dystrophin isoform, Dp117, is expressed in the musculature and is required for muscle integrity. Muscle fibers with reduced levels of Dp117 display disorganized actin-myosin filaments and the cellular hallmarks of necrosis. Our results indicate the existence of at least two possibly separate roles of dystrophin in muscle, maintaining synaptic homeostasis and preserving the structural stability of the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号