首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.  相似文献   

2.
3.
4.
5.
Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.  相似文献   

6.
7.
8.
陈琼  林刚  王娜  胡成钰 《动物学杂志》2008,43(6):97-102
从草鱼(Ctenopharyngodon idella)肝肾cDNA文库中克隆到细胞核酸结合蛋白基因CNBP的完整开放阅读框序列.分析表明草鱼CNBP由163个氨基酸残基组成,含有7个保守CCHC型锌指结构、核定位信号区和RGG框,与其他鱼类的同源性很高.与人及其他脊椎动物的相比,草鱼细胞核酸结合蛋白在第3个锌指中的第5个氨基酸残基由Gly变成His,另外在第1锌指和第2锌指结构间,缺失6~14个氨基酸残基.虽然如此,适应性进化分析显示细胞核酸结合蛋白没有经历正达尔文选择(ω≤1),即这种结构的差异还不足以产生新的功能.这表明CNBP处于中性进化中.  相似文献   

9.
10.
11.
We constructed several deletion mutants of Escherichia coli single-stranded DNA binding protein (EcoSSB) lacking different parts of the C-terminal region. This region of EcoSSB is composed of two parts: a glycine and proline-rich sequence of approximately 60 amino acids followed by an acidic region of the last 10 amino acids which is highly conserved among the bacterial SSB proteins. The single-stranded DNA binding protein of human mitochondria (HsmtSSB) lacks a region homologous to the C-terminal third of EcoSSB. Therefore, we also investigated a chimeric protein consisting of the complete sequence of the human mitochondrial single-stranded DNA binding protein (HsmtSSB) and the C-terminal third of EcoSSB. Fluorescence titrations and DNA-melting curves showed that the C-terminal third of EcoSSB is not essential for DNA-binding in vitro. The affinity for single-stranded DNA and RNA is even increased by the removal of the last 10 amino acids. Consequently, the nucleic acid binding affinity of HsmtSSB is reduced by the addition of the C-terminus of EcoSSB. All mutant proteins lacking the last 10 amino acids are unable to substitute wild-type EcoSSB in vivo. Thus, while the nucleic acid binding properties do not depend on an intact C-terminus, this region is essential for in vivo function. Although the DNA binding properties of HsmtSSB and EcoSSB are quite similar, HsmtSSB does not function in E.coli. This failure cannot be overcome by fusing the C-terminal third of EcoSSB to HsmtSSB. Thus differences in the N-terminal parts of both proteins must be responsible for this incompatibility. None of the mutants was defective in tetramerization. However, mixed tetramers could only be formed by proteins containing the same N-terminal part. This reflects structural differences between the N-terminal parts of HsmtSSB and EcoSSB. These results indicate that the region of the last 10 amino acids, which is highly conserved among bacterial SSB proteins, is involved in essential protein-protein interactions in the E.coli cell.  相似文献   

12.
Byr3 was selected as a multicopy suppressor of the sporulation defects of diploid Schizosaccharomyces pombe cells that lack ras1. Like cells mutant at byr1 and byr2, two genes that encode putative protein kinases and that in multiple copies are also suppressors of the sporulation defects of ras1 null diploid cells, cells mutant at byr3 are viable but defective in conjugation. Nucleic acid sequence indicates byr3 has the capacity to encode a protein with seven zinc finger binding domains, similar in structure to the cellular nucleic acid binding protein (CNBP), a human protein that was identified on the basis of its ability to bind DNA. Expression of CNBP in yeast can partially suppress conjugation defects of cells lacking byr3.  相似文献   

13.
A low-temperature-responsive gene, blt 801, isolated from a winter barley (Hordeum vulgare L.) cDNA library prepared from leaf meristematic tissue, was sequenced. The deduced amino acid sequence predicts a glycine-rich RNA-binding protein (GR-RNP) which was homology to stress-responsive GR-RNPs from several other plant species. BLT 801 is a two-domain protein, the amino-terminal domain comprises a consensus RNA-binding domain similar to that found in many eukaryotic genes and the carboxy-terminal domain is extremely glycine-rich (68.5% glycine). Blt 801 mRNA also accumulates in response to the phytohormone abscisic acid. The protein encoded by blt 801 has been produced as a recombinant fusion protein using a bacterial expression vector. The fusion protein, a chimaera of glutathione S-transferase and BLT 801, has been used in studies to determine nucleic acid binding and other characteristics. Binding studies with single-stranded nucleic acids show that BLT 801 has affinity for homoribopolymers G, A and U but not C, it also binds to single-stranded DNA and selects RNA molecules containing open loop structures enriched in adenine but low in cytosine. BLT 801 has a consensus motif for phosphorylation by cAMP protein kinase (PKA) at the junction between the two domains which can be phosphorylated by PKA in vitro and which, by analogy to animal studies, may have significance for controlling enzyme function.  相似文献   

14.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

15.
Striking conservation in various organisms suggests that cellular nucleic acid binding protein (CNBP) plays a fundamental biological role across different species. Recently, it was reported that CNBP is required for forebrain formation during chick and mouse embryogenesis. In this study, we have used the zebrafish model system to expand and contextualize the basic understanding of the molecular mechanisms of CNBP activity during vertebrate head development. We show that zebrafish cnbp is expressed in the anterior CNS in a similar fashion as has been observed in early chick and mouse embryos. Using antisense morpholino oligonucleotide knockdown assays, we show that CNBP depletion causes forebrain truncation while trunk development appears normal. A substantial reduction in cell proliferation and an increase in cell death were observed in the anterior regions of cnbp morphant embryos, mainly within the cnbp expression territory. In situ hybridization assays show that CNBP depletion does not affect CNS patterning while it does cause depletion of neural crest derivatives. Our data suggest an essential role for CNBP in mediating neural crest expansion by controlling proliferation and cell survival rather than via a cell fate switch during rostral head development. This possible role of CNBP may not only explain the craniofacial anomalies observed in zebrafish but also those reported for mice and chicken and, moreover, demonstrates that CNBP plays an essential and conserved role during vertebrate head development.  相似文献   

16.
17.
18.
We cloned and sequenced the cDNAs which code for rat cellularnucleic acid binding protein (CNBP). In-frame insertion/deletiondifferences were found among the clones at two sites in theopen reading frame, suggesting alternative splicing of the messageor the presence of multiple genes which code for this protein.The deduced amino acid sequence revealed that one rat CNBP sequencewas completely identical to its human counterpart. This strikingconservation, together with the fact that homologous genes havebeen found in various organisms including Schizosaccharomycespombe, suggests that CNBP plays a basic biological role in eukaryoticcells. The recombinant GST-CNBP fusion protein produced in Escherichiacoli bound to a G-rich single-stranded RNA and DNA in a sequence-specificmanner.  相似文献   

19.
20.
The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号