首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WY14,643 is a specific peroxisome proliferator-activated receptor alpha (PPARalpha) agonist with strong hypolipidemic effects. Here we have examined the effect of WY14,643 in the A-ZIP/F-1 mouse, a model of severe lipoatrophic diabetes. With 1 week of treatment, all doses of WY14,643 that were tested normalized serum triglyceride and fatty acid levels. Glucose and insulin levels also improved but only with high doses and longer treatment duration. WY14,643 reduced liver and muscle triglyceride content and increased levels of mRNA encoding fatty acid oxidation enzymes. In liver, the elevated lipogenic mRNA profile (including PPARgamma) in A-ZIP/F-1 mice remained unchanged. These results suggest that WY14,643 acts by increasing beta-oxidation rather by than decreasing lipogenesis or lipid uptake. Hyperinsulinemic euglycemic clamp studies indicated that WY14,643 treatment improved liver more than muscle insulin sensitivity and that hepatic mRNA levels of gluconeogenic enzymes were reduced. Combination treatment with both WY14,643 and a PPARgamma ligand, rosiglitazone, did not lower glucose levels more effectively than did treatment with WY14,643 alone. These data support the hypothesis that reducing intracellular triglycerides in non-adipose tissues improves insulin sensitivity and suggest that further investigation of the role of PPARalpha agonists in the treatment of lipoatrophic diabetes is warranted.  相似文献   

2.
3.
4.
The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5±5.8 versus 17.4±2.7 µmol/kg/min) and serine (21.0±1.4 versus 12.0±1.0) in WY 14,643 versus control. Arginine was substantially decreased (−62%) in plasma with estimated Ra reduced from 3.1±0.3 to 1.2±0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis.  相似文献   

5.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

6.
7.
8.
9.
Peroxisome proliferator-activated receptor (PPAR)-alpha mediates an adaptive response to fasting by up-regulation of genes involved in fatty acid oxidation and ketone body synthesis. Ketone bodies are transferred in and out of cells by monocarboxylate transporter (MCT)-1. In this study we observed for the first time that activation of PPARalpha in rats by clofibrate treatment or fasting increased hepatic mRNA concentration of MCT1. In Fao rat hepatoma cells, incubation with the PPARalpha agonist WY 14,643 increased mRNA concentration of MCT1 whereas the PPARgamma agonist troglitazone did not. To elucidate whether up-regulation of MCT1 is indeed mediated by PPARalpha we treated wild-type and PPARalpha-null mice with WY 14,643. In wild-type mice, treatment with WY 14,643 increased mRNA concentrations of MCT1 in liver, kidney and small intestine whereas no up-regulation was observed in PPARalpha-null mice.  相似文献   

10.
We report the effects of Traditional Chinese Medicine (TCM) on alcohol-induced fatty liver in rats. TCM consists of Astragalus membranaceus, Morus alba, Crataegus pinnatifida, Alisma oriental, Salvia miltiorrhiza and Pueraria lobata. The rats were separated randomly into five groups; the CD group (n=10), which was fed a control diet for 10 weeks, the ED group (n=10), which was fed an isocaloric liquid diet containing ethanol for 10 weeks and given daily oral doses of TCM (0.222 g/kg/day; TCM222, 0.667 g/kg/day; TCM667, and 2.000 g/kg/day; TCM2000, n=10, respectively) over the last four weeks of the study. The ED group developed fatty livers, as determined by their lipid profiles and liver histological findings. Compared with the control group, liver/body weight, plasma triglyceride (TG) and total cholesterol (TC), liver TG and TC, plasma alanine aminotransferase (ALT) and aspartic aminotransferase (AST) significantly increased in the ED group. Also, free fatty acids (FFA) levels increased in both plasma and liver during the administration of ethanol. On the other hand, when rats were administrated with TCM, their liver/body weight, plasma TG, TC and FFA, liver TG, TC and FFA, plasma ALT and AST decreased significantly and the degree of hepatic lipid droplets was markedly improved compared with those in the ED group. Proper function of the peroxisome proliferator-activated receptor alpha (PPARalpha) is essential for the regulation of hepatic fatty acid metabolism. Microsomal triglyceride transfer protein (MTP) is essential for the secretion of triglycerides from the liver. mRNAs for PPARalpha and MTP were reduced in the livers of ethanol-fed rats. TCM restored the mRNA levels of PPARalpha and MTP, and prevented development of fatty livers in ethanol-fed rats. Impairment of PPARalpha and MTP function during ethanol consumption contributes to the development of alcohol-induced fatty liver, which can be overcome by TCM.  相似文献   

11.
Fenofibrate is the ligand for PPARalpha subtype that mediates the action of its agonists' in lipid metabolism. How fibrate exerts hypolipidemic effect? The mechanism is studied in a newly developed high-fat fructose enriched diet induced dyslipidemia-diabetic hamster model. Fenofibrate lowered the basal plasma lipids like TC, TG, PL, FFA, glycerol, VLDL, and LDL, but HDL was increased. The activity of lipoprotein lipase in liver, adipose tissue, and small intestine was upregulated. However, that of triglyceride lipase was downregulated in liver. It has also improved the insulin secretion and plasma glucose lowering, caused by impairment in insulin secretion due to high-fat load. The drug was found effective in reducing body weight and diet due to rise in leptin level. Fenofibrate also enhanced the fecal excretion of total lipids, cholic acid, and deoxycholic acid probably by the activation of 7alpha cholesterol hydroxylase enzyme. Thus, causing broad-spectrum lipid lowering along with inhibition of hepatic lipid biosynthesis and maintaining lipid-glucose homeostasis.  相似文献   

12.
13.
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80–95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.  相似文献   

14.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor with manifold effects on intermediary metabolism. To define a set of urinary biomarkers that could be used to determine the efficacy of PPARalpha agonists, a metabolomic investigation was undertaken in wild-type and Pparalpha-null mice fed for 2 wk either a regular diet or a diet containing the PPARalpha ligand Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid), and their urine was analyzed by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. Principal components analysis of 6393 accurate mass positive ions revealed clustering as a single phenotype of the treated and untreated Pparalpha (-/-) mice plus two additional discrete phenotypes for the treated and untreated Pparalpha (+/+) mice. Biomarkers of PPARalpha activation were identified from their accurate masses and confirmed by tandem mass spectrometry of authentic compounds. Biomarkers were quantitated from raw chromatographic data using appropriate calibration curves. PPARalpha urinary biomarkers highly statistically significantly elevated by Wy-14,643 treatment included 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (>3700-fold), 11beta,20-dihydroxy-3-oxopregn-4-en-21-oic acid (50-fold), nicotinamide (>2-fold), nicotinamide 1-oxide (5-fold), 1-methylnicotinamide (1.5-fold), hippuric acid (2-fold), and 2,8-dihydroxyquinoline-beta-d-glucuronide (3-fold). PPARalpha urinary biomarkers highly statistically significantly attenuated by Wy-14,643 treatment included xanthurenic acid (1.3-fold), hexanoylglycine (20-fold), phenylpropionylglycine (4-fold), and cinnamoylglycine (9-fold). These biomarkers arise from PPARalpha effects on tryptophan, corticosterone, and fatty acid metabolism and on glucuronidation. This study underscores the power of mass spectrometry-based metabolomics combined with genetically modified mice in the definition of monogenic metabolic phenotypes.  相似文献   

15.
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.  相似文献   

16.
17.
Fibrates are a group of hypolipidemic agents that efficiently lower serum triglyceride levels by affecting the expression of many genes involved in lipid metabolism. These effects are exerted via the peroxisome proliferator-activated receptor alpha (PPARalpha). In addition, fibrates also lower serum cholesterol levels, suggesting a possible link between the PPARalpha and cholesterol metabolism. Bile acid formation represents an important pathway for elimination of cholesterol, and the sterol 12alpha-hydroxylase is a branch-point enzyme in the bile acid biosynthetic pathway, which determines the ratio of cholic acid to chenodeoxycholic acid. Treatment of mice for 1 week with the peroxisome proliferator WY-14,643 or fasting for 24 h both induced the sterol 12alpha-hydroxylase mRNA in liver. Using the PPARalpha knockout mouse model, we show that the induction by both treatments was dependent on the PPARalpha. A reporter plasmid containing a putative peroxisome proliferator-response element (PPRE) identified in the rat sterol 12alpha-hydroxylase promoter region was activated by treatment with WY-14,643 in HepG2 cells, being dependent on co-transfection with a PPARalpha expression plasmid. The rat 12alpha-hydroxylase PPRE bound in vitro translated PPARalpha and retinoid X receptor alpha, albeit weakly, in electrophoretic mobility shift assay. Treatment of wild-type mice with WY-14,643 for 1 week resulted in an increased relative amount of cholic acid, an effect that was abolished in the PPARalpha null mice, verifying the functionality of the PPRE in vivo.  相似文献   

18.
A study was made on protein metabolism and hormonal changes following birth in newborn lambs fed amino acids alone or in combination with lactose. Eight newborn lambs taken from their mother immediately after birth were fed hourly for 8 h, either with a solution of peptides and free amino acids obtained by mild hydrolysis of whey proteins (4 lambs; diet AP) or with the same solution + lactose (4 lambs; diet APL). L-[4,5-3H] leucine was continuously perfused into a jugular vein for 6 h when the lambs were 2 h 30 min old. Plasma glucose and insulin levels increased after birth in APL lambs whereas they decreased in the AP; these differences were significantly different. Plasma cortisol levels remained unchanged throughout the experiment. Free essential amino acid levels did not vary when lambs were older than 4.5 h; they depended on the corresponding amino acid intakes. Plasma free threonine, valine, isoleucine, leucine, tyrosine and lysine were lower in APL than in AP lambs. The plasma leucine irreversible loss and leucine oxidation were higher in AP than in APL lambs. The plasma flux of leucine from whole body protein breakdown was lower in APL than in AP lambs inasmuch as the plasma flux of dietary leucine may be estimated by the amounts of leucine ingested in both cases. No significant difference was found for the fractional synthesis rates of tissue proteins such as liver, skin, skeletal muscle, lung, brain and whole body. These rates for skin, muscle and whole body were close to those previously measured in colostrum fed lambs. The increase in whole body protein accretion resulting from lactose feeding in combination with amino acids seemed to result from a decreased protein breakdown that could be mediated by the insulin response.  相似文献   

19.
Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied by increased hepatic mitochondrial beta-oxidation and a decreased fatty acid/ketone body ratio in plasma. These findings indicate that PPARalpha-dependent mechanisms play a pivotal role, but additionally, the involvement of PPARalpha-independent pathways is conceivable. Taken together, our results suggest that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号