首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mfge8 is critical for mammary gland remodeling during involution   总被引:9,自引:0,他引:9       下载免费PDF全文
Apoptosis is a critical process in normal mammary gland development and the rapid clearance of apoptotic cells prevents tissue injury associated with the release of intracellular antigens from dying cells. Milk fat globule-EGF-factor 8 (Mfge8) is a milk glycoprotein that is abundantly expressed in the mammary gland epithelium and has been shown to facilitate the clearance of apoptotic lymphocytes by splenic macrophages. We report that mice with disruption of Mfge8 had normal mammary gland development until involution. However, abnormal mammary gland remodeling was observed postlactation in Mfge8 mutant mice. During early involution, Mfge8 mutant mice had increased numbers of apoptotic cells within the mammary gland associated with a delay in alveolar collapse and fat cell repopulation. As involution progressed, Mfge8 mutants developed inflammation as assessed by CD45 and CD11b staining of mammary gland tissue sections. With additional pregnancies, Mfge8 mutant mice developed progressive dilatation of the mammary gland ductal network. These data demonstrate that Mfge8 regulates the clearance of apoptotic epithelial cells during mammary gland involution and that the absence of Mfge8 leads to inflammation and abnormal mammary gland remodeling.  相似文献   

2.
Yu H  Zhao G  Li H  Liu X  Wang S 《Gene》2012,497(2):301-306
The present study was designed to investigate the underlying molecular mechanism for Angiotensin II type 1 receptor blockers (ARBs) mediated cardio-protection against pressure overload-induced cardiac remodeling with a focus on Smad7. ROCK-1, Smad3 and fibronectin expressions were increased in male C57BL/6 mice underwent transverse aortic constriction (TAC) for 2weeks. Treatment with Candesartan (2mg/kg per day) could effectively downregulate Smad3 and fibronectin accompanied by upregulating of Smad7. Further data showed that Candesartan inhibited TGF-β1 signal-induced epithelial-to-mesenchymal transition (EMT) through attenuating matrix metalloproteinases (MMP-9), such effect was abolished by knocking-down Smad7. Moreover, TAC for 2weeks caused increased collagen deposition, thickness of left ventricular anterior and posterior wall at end-diastole (LVAWD and LVPWD) and LVEF% reduction, which were reversed by treatment with Candesartan, but failed after knocking-down Smad7. In addition, LV dP/dt(max) and dP/dt(min) were increased by TAC for 2weeks, and treatment with Candesartan or Nifedipine effectively depressed the high levels of dP/dt(min) induced by TAC. However, only Candesartan-mediated protective role in improving cardiac function was suppressed by tail-vein injection of Smad7 siRNA. This study uncovered a novel role for ARBs in preventing pressure overload-induced cardiac remodeling via Smad7 upregulation, which suppressed MMP-9 expression and TGF-β1 signal-mediated EMT progress.  相似文献   

3.
4.
Cytokeratins are intermediate filament proteins found in most epithelial cells including the mammary epithelium. Specific cytokeratin expression has been found to mark different epithelial cell lineages and also to associate with putative mammary stem/progenitor cells. However, a comparative analysis of the expression of cytokaratins during embryonic and postnatal mammary development is currently lacking. Moreover, it is not clear whether the different classes of putative mammary stem/progenitor cells exist during embryonic development. Here, we use double/triple-label immunofluorescence and immunohistochemistry to systematically compare the expression of cytokeratin 5 (K5), cytokeratin 6 (K6), cytokeratin 8 (K8), cytokeratin 14 (K14) and cytokeratin 19 (K19) in embryonic and early postnatal mouse mammary glands. We show that K6+ and K8+/K14+ putative mammary progenitor cells arise during embryogenesis with distinct temporal and spatial distributions. Moreover, we describe a transient disconnection of the expression of K5 and K14, two cytokeratins that are often co-expressed, during the first postnatal weeks of mammary development. Finally, we report that cytokeratin expression in cultured primary mammary epithelial cells mimics that during the early stages of postnatal mammary development. These studies demonstrate an embryonic origin of putative mammary stem/progenitor cells. Moreover, they provide additional insights into the use of specific cytokeratins as markers of mammary epithelial differentiation, or the use of their promoters to direct gene overexpression or ablation in genetic studies of mouse mammary development.  相似文献   

5.
6.
7.

Background  

Inhibitors-of-Apoptosis-Proteins (IAPs) are an evolutionarily conserved family of proteins capable of regulating several facets of apoptosis. IAPs are frequently dysregulated in cancer, but their role in the regulation of apoptosis during developmental processes is not fully understood. Here we examined the expression of IAPs during the post-natal development of the mouse mammary gland, which is a tissue that exhibits a profound induction of apoptosis during involution.  相似文献   

8.
The enzyme content and mRNA level for both urokinase-type and tissue-type plasminogen activators have been explored during the life cycle of the adult mouse mammary gland. Both enzymes were detected, and urokinase-type plasminogen activator was the predominant form. A marked decrease in enzyme content occurred in late gestation and was maintained throughout lactation; upon weaning, the enzyme content returned to the levels found in virgin mice. These effects were entirely accounted for by changes in the respective mRNA concentrations, which were determined with respect to both total tissue RNA and poly(A+) mRNA. Thus, plasminogen activator-catalyzed proteolysis may occur at high levels throughout the life cycle of the mouse mammary gland, except during lactation.  相似文献   

9.
WAVE3 is a member of the WASP/WAVE family of proteins, which play a critical role in the regulation of actin polymerization, cytoskeleton organization, and cell motility. We show here that knockdown of the WAVE3 protein, using RNA interference in MDA-MB-231 cells, decreases phospho-p38 MAPK levels, but not those of phospho-AKT, phospho-ERK, or phospho-JNK. Knockdown of WAVE3 expression also inhibited the expression levels of MMP-1, MMP-3, and MMP-9, but not MMP-2. MMP production could be restored by PMA treatment, without affecting siRNA-mediated WAVE3 knockdown. The WAVE3-mediated downregulation of p38 activity and MMP production is independent of the presence of both WAVE1 and WAVE2, whose expression levels were not affected by loss of WAVE3. We also show that the downstream effect of the WAVE3 knockdown is the inhibition of cell motility and invasion, coupled with increased actin stress fiber formation, as well as reorganization of focal adhesion complexes. These findings suggest that WAVE3 regulates actin cytoskeleton, cell motility, and invasion through the p38 MAPK pathway and MMP production.  相似文献   

10.
11.
During puberty, mouse mammary epithelial ducts invade the stromal mammary fat pad in a wave of branching morphogenesis to form a complex ductal tree. Using pharmacologic and genetic approaches, we find that mammary gland branching morphogenesis requires transient matrix metalloproteinase (MMP) activity for invasion and branch point selection. MMP-2, but not MMP-9, facilitates terminal end bud invasion by inhibiting epithelial cell apoptosis at the start of puberty. Unexpectedly, MMP-2 also represses precocious lateral branching during mid-puberty. In contrast, MMP-3 induces secondary and tertiary lateral branching of ducts during mid-puberty and early pregnancy. Nevertheless, the mammary gland is able to develop lactational competence in MMP mutant mice. Thus, specific MMPs refine the mammary branching pattern by distinct mechanisms during mammary gland branching morphogenesis.  相似文献   

12.
13.
To understand the molecular mechanisms of mammary gland involution, an involution-induced clone was identified from a cDNA library of mouse mammary gland by differential screening. Characterization of a clone by sequencing and northern analysis showed that expression of the osteopontin gene was induced during involution of mouse mammary gland. But induction of the osteopontin gene was not observed in apoptotic HC11 mammary epithelial cells under serum starvation. In HC11 cells, dexamethasone treatment from the seeding stage showed five-fold induction of osteopontin gene expression, but the expression was not changed when dexamethasone was added to confluent cells.  相似文献   

14.
Mammary glands undergo functional and metabolic changes during virgin, lactation and dry periods. A total of 122 genes were identified as differentially expressed, including 79 up-regulated and 43 down-regulated genes during lactation compared with virgin and dry periods. Gene ontology analysis showed the functional classification of the up-regulated genes in lactation, including transport, biosynthetic process, signal transduction, catalytic activity, immune system process, cell death, and positive regulation of the developmental process. Microarray data clarified molecular events in bovine mammary gland lactation.  相似文献   

15.
The mammary alveolus is a highly specialized structure that secretes milk for suckling infants during lactation. The secreting alveolus consists in alveolar epithelial cells (AECs) and myoepithelial cells and is surrounded by microvascular endothelial cells, adipocytes and several immune cell types such as macrophages and neutrophils. During normal lactation, these cells play distinct roles needed to maintain the secretory ability of the mammary alveolus. However, inflammation resulting from pathogenic bacterial infections causes structural and functional regression of the secreting alveolus in the lactating mammary gland. We initiated artificial inflammation in the mammary glands of lactating mice by injecting lipopolysaccharide (LPS), as a mammary inflammation model and investigated, by immunohistochemical analysis, the early response of the cells constituting and surrounding the alveolus. Some AECs sloughed away from the alveolar epithelial layer and showed progression of apoptosis detected by immunostaining of cleaved caspase-3 after LPS injection. Adipocytes exhibited transient shrinkage and re-accumulation of lipid droplets, although the numbers of adipocytes did not demonstrate a significant difference. Activation of F4/80-positive cells around the mammary alveolus was observed 3 h after LPS injection. However, the recruitment of CD11b-positive cells into the alveolar lumen was not observed until 12 h after LPS injection. Myoepithelial cells were contracted after LPS injection. LPS injection around the alveolus did not induce any detectable structural changes in capillaries surrounding the alveolus. Thus, cell-specific behavior and tissue remodeling of the alveolus occur after LPS injection in a time-dependent manner.  相似文献   

16.
Glucose transporter expression in rat mammary gland.   总被引:1,自引:0,他引:1       下载免费PDF全文
The expression of different glucose transporter isoforms was measured during the development and differentiation of the rat mammary gland. Before conception, when the mammary gland is mainly composed of adipocytes, Glut 4 and Glut 1 mRNAs and proteins were present. During pregnancy, the expression of Glut 4 decreased progressively, whereas that of Glut 1 increased. In the lactating mammary gland only Glut 1 was present, and was expressed at a high level. The absence of Glut 4 suggests that glucose transport is not regulated by insulin in the lactating rat mammary gland.  相似文献   

17.
Matrix metalloproteinases and their expression in mammary gland   总被引:5,自引:1,他引:4  
The matrix metalloproteinases (MMPs) are a family of zine-dependent endopeptidases that play a key role in both normal and pathological processes involving tissue remodeling events.The expression of these proteolytic enzymes is highly regulated by a balance between extracellular matrix (ECM) deposition and its degradation,and is controlled by growth factors,cytokines,hormones,as well as interactions with the ECM macromolecules.Furthermore,the activity of the MMPs is regulated by their natural endogenous inhibitors,which are members of the tissue inhibitor of metalloproteinases (TIMP) family.In the normal mammary gland,MMPs are expressed during ductal development,lobulo-alveolar development in pregnancy and involution after lactation.Under pathological conditions,such as tumorigenesis,the dysregulated expression of MMPs play a role in tumor initiation,progression and malignant conversion as well as facilitating invasion and metastasis of malignant cells through degradation of the ECM and basement membranes.  相似文献   

18.
During lactation, branched-chain aminotransferase (BCAT) gene expression increases in the mammary gland. To determine the cell type and whether this induction is present only during lactation, female rats were randomly assigned to one of three experimental groups: pregnancy, lactation, or postweaning. Mammary gland BCAT activity during the first days of pregnancy was similar to that of virgin rats, increasing significantly from day 16 to the last day of pregnancy. Maximal BCAT activity occurred on day 12 of lactation. During postweaning, BCAT activity decreased rapidly to values close to those observed in virgin rats. Analyses by Western and Northern blot revealed that changes in enzyme activity were accompanied by parallel changes in the amount of enzyme and its mRNA. Immunohistochemical studies of the mammary gland showed a progressive increase in mitochondrial BCAT (mBCAT)-specific staining of the epithelial acinar cells during lactation, reaching high levels by day 12. Immunoreactivity decreased rapidly after weaning. There was a significant correlation between total BCAT activity and milk production. These results indicate that the pattern of mBCAT gene expression follows lactogenesis stages I and II and is restricted to the milk-producing epithelial acinar cells. Furthermore, BCAT activity is associated with milk production in the mammary gland during lactation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号