首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human neuroblastoma cell line (Paju) grew in 10 mM difluoromethyl-ornithine, which at this concentration normally stops the growth of all mammalian cells. Ornithine decarboxylase from Paju was resistant to inhibition in vitro by difluoromethylornithine, and required 10 microM of the compound for 50% inhibition, whereas ornithine decarboxylase from SH-SY5Y cells (another human neuroblastoma) and from rat liver needed only 0.5 microM difluoromethylornithine. Paju ornithine decarboxylase also exhibited a long half-life (over eight hours) in vivo. The half-life of immunoreactive protein was significantly longer than that of the activity. The long half-life of ornithine decarboxylase in Paju cells leads to its accumulation to a specific activity of 2000 nmol/mg of protein per 30 min during rapid growth (the corresponding activity in SH-SY5Y cells was about 2.5). When partially purified ornithine decarboxylase from Paju cells was incubated with rat liver microsomes it was inactivated with a half-life of 75 min. This inactivation was accompanied by a fall in the amount of immunoreactive protein. In the same inactivating system partially purified SH-SY5Y ornithine decarboxylase had a half-life of 38 min and its half-life in vivo was 50 min. The corresponding values for rat liver ornithine decarboxylase were 45 min and 40 min, respectively. Rat liver microsomes also inactivated rat liver adenosylmethionine decarboxylase. These results suggest that Paju ornithine decarboxylase has an altered molecular conformation, rendering it resistant to (i) difluoromethylornithine and (ii) proteolytic degradation both in vivo and in vitro.  相似文献   

2.
Mutant mouse lymphoma cells that overproduce ornithine decarboxylase have been generated by selection for resistance to difluoromethylornithine, an inhibitor of the enzyme. Starting with wild type S49 mouse lymphoma cells, sensitive to growth inhibition by 10 microM difluoromethylornithine, we obtained the Z.12 line, which is approximately 100 times more resistant to that drug (McConlogue, L., and Coffino, P. (1983) J. Biol. Chem. 258, 8384-8388). Subsequent selection for still higher levels of resistance was applied to the Z.12 cells and resulted in the generation of the D4.1 line, resistant to 10 mM difluoromethylornithine. The relative synthesis of ornithine decarboxylase in wild type, Z.12, and D4.1 cells was assessed by pulse labeling these cells with [35S]methionine and analyzing the radiolabeled proteins directly, or after immunoprecipitation, on sodium dodecyl sulfate-polyacrylamide gels. As shown previously, the rate of ornithine decarboxylase synthesis is augmented in Z.12 as compared to wild type. In D4.1 cells, the rate of synthesis of ornithine decarboxylase exceeds that of any other single protein; about 15% of total protein synthesis is devoted to the enzyme. The relative amounts of translatable ornithine decarboxylase mRNA in each cell line was determined by in vitro translation of extracted RNA. These results showed that the relative rate of synthesis in each cell line is a reflection of the cell's relative content of translatable ornithine decarboxylase mRNA. Examination of the chromosomes of wild type and D4.1 cells revealed that the former are pseudodiploid and the latter tetraploid. Two of the four chromosomes 14 in D4.1 contain large homogeneously staining regions, a finding consistent with the presence of regions of gene amplification.  相似文献   

3.
An exposure of a human myeloma cell line to 2-difluoromethylornithine the mechanism-based inhibitor of ornithine decarboxylase (EC 4.1.1.17), resulted in a selection of tumor cells readily growing in the presence of 4 mM difluoromethylornithine, a concentration that swiftly halted the growth of the parental cells. Determination of the intracellular polyamines revealed that there were measurable amounts of putrescine and spermidine in the resistant cells. Restriction enzyme analyses of genomic DNA isolated from the resistant cells indicated that the gene dosage for ornithine decarboxylase was not increased to any appreciable extent. Similarly, the accumulation of mRNA was unaltered. The resistant myeloma cells, however, displayed arginase (EC 3.5.3.1) activity that was roughly ten times higher than that in the parental cells.  相似文献   

4.
Variant S49 mouse lymphoma cells with increased ornithine decarboxylase activity were obtained by selecting for resistance to alpha-difluoromethylornithine (DFMO), a specific inhibitor of the enzyme. Ornithine decarboxylase was identified as a specifically immunoprecipitable polypeptide that was made at an increased rate in the variant cells. Ornithine decarboxylase was also identified on a two-dimensional gel as a metabolically labeled polypeptide of Mr approximately 55,000 which was synthesized at an increased rate in two independently selected variants. Synthesis of this polypeptide was further augmented by treatment of cells with inhibitors of ornithine decarboxylase activity. The charge of the polypeptide was altered by treatment of either cells or cellular extracts with DFMO, a suicide substrate which binds covalently to the enzyme. This charge alteration and the inactivation of ornithine decarboxylase showed the same dependence on DFMO concentration and both effects were prevented by addition of either ornithine or putrescine. Pulse-chase experiments showed that the half-life of the ornithine decarboxylase polypeptide in these variant cells was 45 min. We conclude that ornithine decarboxylase is made at an increased rate in the resistant variants and that the polypeptide turns over rapidly.  相似文献   

5.
6.
Polyamines in mycoplasmas and in mycoplasma-infected tumour cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Three out of four different mycoplasma strains analysed for the polyamine contents contained relatively high concentrations of putrescine, cadaverine, spermidine and spermine. In addition to ornithine decarboxylase (EC 4.1.1.17) activity, the mycoplasmas also exhibited comparable or higher lysine decarboxylase (EC 4.1.1.18) activity fully resistant to the action of 2-difluoromethylornithine, an irreversible inhibitor of eukaryotic ornithine decarboxylase. 2-Difluoromethylornithine did not modify the polyamine pattern of actively growing mycoplasmas. Ehrlich ascites carcinoma cells and L1210 mouse leukemia cells infected with any of the four mycoplasma strains contained, in addition to putrescine, spermidine and spermine, and also easily measurable concentrations of cadaverine; the latter diamine was absent in uninfected cultures. When the infected cells were exposed to difluoromethylornithine, the accumulation of cadaverine was markedly enhanced. The modification of cellular polyamine pattern by mycoplasmas, especially in the presence of inhibitors of eukaryotic ornithine decarboxylase, could conceivably be used as an indicator of mycoplasma infection in cultured animal cells.  相似文献   

7.
Stepwise increments of the concentration of 2-difluoromethylornithine, a mechanism-based irreversible inhibitor of mammalian ornithine decarboxylase (EC 4.1.1.17), resulted in a selection of cultured Ehrlich ascites carcinoma cells capable of growing in the presence of up to 50 mM difluoromethylornithine. Dialyzed extracts of drug-resistant tumor cells exhibited a very high ornithine decarboxylase activity and contained large excess of immunoreactive ornithine decarboxylase protein. Hybridization analyses with cloned complementary DNA revealed that the difluoromethylornithine-resistant tumor cells also expressed mRNA of the enzyme at greatly enhanced rate. The overproduction of ornithine decarboxylase by the tumor cells grown under the pressure of difluoromethylornithine was at least partly attributable to a 10 to 20-fold increase in the total gene dosage of ornithine decarboxylase involving an amplification of several genes of the gene family. The gene amplification developed appeared to be stable, as the gene dosage only slowly (during a period of several months) returned towards the normal level upon the removal of difluoromethylornithine. The overproduction of ornithine decarboxylase was accompanied by an enhanced resistance of the enzyme towards difluoromethylornithine in vitro.  相似文献   

8.
The effect of testosterone on half-lives of ornithine decarboxylase and its mRNA in mouse kidney was studied. In addition to the prolongation of enzyme protein half-life by androgens, excess of testosterone increases in vivo the half-life of its mRNA to about 3-fold as manifested by the change of enzyme half-life in testosterone-treated animals after alpha-amanitin or actinomycin D. These results suggest that the accumulation of ornithine decarboxylase in mouse kidney by androgens is partly due to the stabilization of its mRNA.  相似文献   

9.
1-Aminooxy-3-aminopropane was shown to be a potent competitive inhibitor (Ki = 3.2 nM) of homogenous mouse kidney ornithine decarboxylase, a potent irreversible inhibitor (Ki = 50 microM) of homogeneous liver adenosylmethionine decarboxylase and a potent competitive (Ki = 2.3 microM) of homogeneous bovine brain spermidine synthase. It did not inhibit homogeneous bovine brain spermine synthase and it did not serve as a substrate for spermidine synthase. The compound did not inhibit tyrosine aminotransferase, alanine aminotransferase or aspartate aminotransferase, which are pyridoxal phosphate-containing enzymes like ornithine decarboxylase. The inactivation of adenosylmethionine decarboxylase was partially prevented by pyruvate, which is the coenzyme of adenosylmethionine decarboxylase, and by the substrate, adenosylmethionine. 1-Aminooxy-3-aminopropane at 0.5 mM concentration inhibited the growth of HL-60 promyelocytic leukemia cells and this inhibition was prevented by spermidine but not by putrescine.  相似文献   

10.
Four mouse and two human tumour cell lines resistant to alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), were analysed for the activities of polyamine-biosynthetic and -biodegradative enzymes as well as for cellular polyamine contents. In all but one of these cell lines the resistance to DFMO was based on an overproduction of ODC. In a human myeloma cell line the resistance was based on a greatly enhanced arginase activity. Except for one L1210 variant cell line, all the resistant cell lines contained elevated S-adenosylmethionine decarboxylase activity. Similarly, all the resistant mouse, but not human, cell lines displayed enhanced spermidine and spermine synthase activities. Arginase activity was detected only in human cell lines. In both DFMO-resistant cell lines the activity of arginase was strikingly elevated. Of the biodegradative enzymes, polyamine oxidase activity was readily detectable in all mouse cells, but no measurable activity was found in the human cells. Spermidine/spermine N1-acetyltransferase activity was elevated in three out of four resistant mouse cell lines. Even though the concentration of spermidine was usually lower in the overproducer cells, this was compensated by an increased content of spermine. The two resistant human myeloma cells contained intracellular ornithine concentrations that were from more than 5 to more than 20 times higher than those in the parental cells.  相似文献   

11.
The mechanisms by which topically applied retinoic acid to mouse skin inhibits tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced epidermal ornithine decarboxylase activity were analyzed. Retinoic acid inhibition of the induction of epidermal ornithine decarboxylic activity was not the result of nonspecific cytotoxicity, production of a soluble inhibitor of ornithine decarboxylase, or direct effect on its activity. In addition, inhibition of TPA-caused increased ornithine decarboxylase activity does not appear to be due to enhanced degradation and/or post-translational modification of ornithine decarboxylase by transglutaminase-mediated putrescine incorporation. We found that retinoic acid inhibits the synthesis of ornithine decarboxylase caused by TPA. Application of 10 nmol TPA to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase activity which was paralled by increased [3H]difluoromethylornithine binding and an increased incorporation of [35S]methionine into the enzyme. Application of 17 nmol retinoic acid 1 h prior to application of 10 nmol TPA to skin resulted in inhibition of the induction of activity which accompanied inhibition of [3H]difluoromethylornithine binding and [35S]methionine incorporation into ornithine decarboxylase protein as determined by the tube-gel electrophoresis of the enzyme immunoprecipitated with monoclonal antibodies to it. Inhibition of ornithine decarboxylase synthesis was not the result of the inhibitory effect of retinoic acid on general protein synthesis. The results indicate that retinoic acid possibly inhibits TPA-caused synthesis of ornithine decarboxylase protein selectively.  相似文献   

12.
Ornithine decarboxylase, the rate-limiting enzyme in the polyamine biosynthetic pathway has been purified 7,600 fold from Plasmodium falciparum by affinity chromatography on a pyridoxamine phosphate column. The partially purified enzyme was specifically tagged with radioactive DL-alpha-difluoromethylornithine and subjected to polyacrylamide gel electrophoresis under denaturing conditions. A major protein band of 49 kilodalton was obtained while with the purified mouse enzyme, a typical 53 kilodalton band, was observed. The catalytic activity of parasite enzyme was dependent on pyridoxal 5'-phosphate and was optimal at pH 8.0. The apparent Michaelis constant for L-ornithine was 52 microM. DL-alpha-difluoromethylornithine efficiently and irreversibly inhibited ornithine decarboxylase activity from P. falciparum grown in vitro or Plasmodium berghei grown in vivo. The Ki of the human malarial enzyme for this inhibitor was 16 microM. Ornithine decarboxylase activity in P. falciparum cultures was rapidly lost upon exposure to the direct product, putrescine. Despite the profound inhibition of protein synthesis with cycloheximide in vitro, parasite enzyme activity was only slightly reduced by 75 min of treatment, suggesting a relatively long half-life for the malarial enzyme. Ornithine decarboxylase activity from P. falciparum and P. berghei was not eliminated by antiserum prepared against purified mouse enzyme. Furthermore, RNA or DNA extracted from P. falciparum failed to hybridize to a mouse ornithine decarboxylase cDNA probe. These results suggest that ODC from P. falciparum bears some structural differences as compared to the mammalian enzyme.  相似文献   

13.
The differential response to polyamine depletion has been studied in two types of human lung tumor cells. Small cell lung carcinoma cells die following polyamine depletion by difluoromethylornithine treatment while non-small cell lines demonstrate a typical cytostatic response. We now report that a small cell line, NCI H82, has a lower apparent capacity for polyamine biosynthesis than does a representative non-small cell, NCI H157. In subconfluent cultures, the ornithine decarboxylase activity is 25 times lower in the small cell than the non-small cell and by comparison, the polyamines in the small cell line are markedly reduced. Most significantly, levels of mRNA coding for ornithine decarboxylase are approximately 100-fold lower in the small cell than the non-small cell line, and this difference does not appear to be a result of gene rearrangement. These results suggest that differential sensitivity to polyamine depletion is related to different steady-state levels of ornithine decarboxylase mRNA.  相似文献   

14.
Ornithine decarboxylase was purified from androgen-treated mouse kidney to homogeneity and high specific activity. The purified enzyme was utilized for production and screening of rat monoclonal and polyclonal antibodies. A rat monoclonal antibody was isolated which was capable of immunoprecipitation of native mouse kidney ornithine decarboxylase activity or the [3H]difluoromethylornithine-inactivated enzyme. Phosphorylation of mouse ornithine decarboxylase by casein kinase-II prior to immunoprecipitation led to complete loss of the epitope recognized by the monoclonal antibody but did not alter recognition by polyclonal antibody. Mammalian ornithine decarboxylase activity obtained from several species, in crude or partially purified extracts, was subjected to quantitative immunoprecipitation with monoclonal and polyclonal antibody. Polyclonal antibody immunoprecipitated all of the ornithine decarboxylase activity from every extract tested, while monoclonal antibody was capable of only limited immunoprecipitation (60-80%). Due to the inability of the monoclonal antibody to recognize ornithine decarboxylase phosphorylated in vitro by casein kinase-II and the partial immunoprecipitation of ornithine decarboxylase activity from cell extracts, a portion of the ornithine decarboxylase molecule population must exist in a phosphorylated state. This immunological evidence further confirms existing data that the enzyme exists in at least two distinct forms.  相似文献   

15.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

16.
The activities of ornithine decarboxylase and spermidine N1-acetyltransferase started to rise in normal rat liver 4 h after the intraperitoneal injection of methylglyoxal bis(guanylhydrazone) (MGBG; 80 mg/kg). Ornithine decarboxylase had its greatest activity 24 h after a single injection of MGBG and the acetyltransferase peaked 8 h after the injection. Measurement of the apparent half-life of ornithine decarboxylase after MGBG treatment revealed a clear decrease in the decay rate of the enzyme in both normal and regenerating rat liver. MGBG slowed the decay of the transferase also in normal rat liver, as well as inhibiting its activity in vitro. The stabilization by MGBG of these two short-lived proteins involved in metabolism of polyamines should lead to their accumulation in liver, thus explaining their increased activities. In the case of ornithine decarboxylase, studies with a specific antibody against mouse kidney ornithine decarboxylase showed that the rise in ornithine decarboxylase activity after MGBG application was not due to the appearance of an immunologically different isozyme.  相似文献   

17.
We have isolated from an arginase-deficient polyamine-dependent Chinese hamster ovary cell line a new mutant strain that has greatly increased ornithine decarboxylase activity. This enables the cells, in the absence of ornithine, to decarboxylate lysine into cadaverine (diaminopentane) that is further converted into N-(3-aminopropyl)cadaverine and N,N'-bis(3-aminopropyl)cadaverine. These unusual polyamines can support the growth of the cells without added polyamines derived from ornithine. Immunoreactive ornithine decarboxylase-like protein was clearly increased in the mutant cells but could not solely account for the greatly increased enzyme activity. Southern blot analysis of DNA hybridized to a plasmid carrying ornithine decarboxylase-cDNA revealed at least a 32-fold amplification of the ornithine decarboxylase gene. Ornithine decarboxylase-mRNA concentration was also highly increased in the cells. The half-life of the enzyme and the Km for ornithine were not altered from those of the parental cell line.  相似文献   

18.
Ornitine decarboxylase was purified from androgen-treated mouse kidney to homogeneity and high specific activity. The purified enzyme was utilized for production and screeing of rat monoclonal and polyclonal antibodies. A rat monoclonal antibody was isolated which was capable of immunoprecipitation of native mouse kidney ornitine decarboxylase activity or the [3H]difluoromethylornithine-inactivated enzyme. Phosphorylation of mouse ornithine decarboxylase by casein kinase-II prior to immunoprecipitation led to complete loss of the epitope recognized by the monoclonal antibody but did not alter recognition by polyclonal antibody. Mammalian ornithine decarboxylase activity obtainied from several species, in crude or partially purified extracts, was subjected to quantitative immunoprecipitatin with monoclonal and polyclonal antibody. Polyclonal antibody immunoprecipitated all of the ornthine decarboxylase activity from every extract tested, while monoclonal antibody was capable of only limited immunoprecipitation (60–80%). Due to the inability of the monoclonal antibody to recognize ornithine decarboxylase phosphorylated in vitrol by casein kinase-II and the partial immunoprecipitation of ornithine decarboxylase activity from cell extracts, a portion of the ornithine decarboxylase molecule population must exist in a phosphrylated state. This immunological evidence further confirms existing data that the enzyme in at least two distinct forms.  相似文献   

19.
Starvation of the polyamine-dependent Chinese-hamster ovary cells for ornithine or ornithine-derived polyamines in serum-free culture resulted in the formation of cadaverine and its aminopropyl derivatives, N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine. The synthesis of these unusual amines was inhibited by treatment of the cells with DL-2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17). In the absence of ornithine (the normal substrate), ornithine decarboxylase thus appeared to catalyse the decarboxylation of lysine to cadaverine. Cell proliferation was markedly inhibited by ornithine deprivation of the cells, and further depressed by exposure of the cultures to difluoromethylornithine.  相似文献   

20.
1. The effect of dichlororibofuranosylbenzimidazole (DiCl-RB), an inhibitor of hnRNA synthesis and casein kinase-2 activity, on ornithine decarboxylase (ODC) was investigated in a difluoromethylornithine (DFMO) resistant, ODC overproducing cell line. 2. In cells growing in the absence of DFMO, DiCl-RB provoked a marked, but transient increase in ODC activity and immunoreactive ODC content. 3. The ODC response to DiCl-RB was prevented by cycloheximide and was not due to stabilization of the enzyme. 4. The dibromo derivative analogue (DiBr-RB) exerted similar effects on ODC, but was effective at lower concentrations. 5. The halogenated ribofuranosylbenzimidazoles were ineffective in cells growing in the presence of DFMO and containing higher levels of ODC protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号