首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of glycosylation in the organic anion transporter OAT1   总被引:1,自引:0,他引:1  
Organic anion transporters (OAT) play essential roles in the body disposition of clinically important anionic drugs, including antiviral drugs, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We reported previously (Kuze, K., Graves, P., Leahy, A., Wilson, P., Stuhlmann, H., and You, G. (1999) J. Biol. Chem. 274, 1519-1524) that tunicamycin, an inhibitor of asparagine-linked glycosylation, significantly inhibited organic anion transport in COS-7 cells expressing a mouse organic anion transporter (mOAT1), suggesting an important role of glycosylation in mOAT1 function. In the present study, we investigated the effect of disrupting putative glycosylation sites in mOAT1 as well as its human counterpart, hOAT1, by mutating asparagine to glutamine and assessing mutant transporters in HeLa cells. We showed that the putative glycosylation site Asp-39 in mOAT1 was not glycosylated but the corresponding site (Asp-39) in hOAT1 was glycosylated. Disrupting Asp-39 resulted in a complete loss of transport activity in both mOAT1 and hOAT1 without affecting their cell surface expression, suggesting that the loss of function is not because of deglycosylation of Asp-39 per se but rather is likely because of the change of this important amino acid critically involved in the substrate binding. Single replacement of asparagines at other sites had no effect on transport activity indicating that glycosylation at individual sites is not essential for OAT function. In contrast, a simultaneous replacement of all asparagines in both mOAT1 and hOAT1 impaired the trafficking of the transporters to the plasma membrane. In summary, we provided the evidence that 1) Asp-39 is crucially involved in substrate recognition of OAT1, 2) glycosylation at individual sites is not required for OAT1 function, and 3) glycosylation plays an important role in the targeting of OAT1 onto the plasma membrane. This study is the first molecular identification and characterization of glycosylation of OAT1 and may provide important insights into the structure-function relationships of the organic anion transporter family.  相似文献   

2.
The primary site of mercury-induced injury is the kidney due to uptake of the reactive Hg(2+)-conjugated organic anions in the proximal tubule. Here, we investigated the in vivo role of Oat1 (organic anion transporter 1; originally NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478)) in handling of known nephrotoxic doses of HgCl(2). Oat1 (Slc22a6) is a multispecific organic anion drug transporter that is expressed on the basolateral aspects of renal proximal tubule cells and that mediates the initial steps of elimination of a broad range of endogenous metabolites and commonly prescribed pharmaceuticals. Mercury-induced nephrotoxicity was observed in a wild-type model. We then used the Oat1 knock-out to determine in vivo whether the renal injury effects of mercury are mediated by Oat1. Most of the renal injury (both histologically and biochemically as measured by blood urea nitrogen and creatinine) was abolished following HgCl(2) treatment of Oat1 knock-outs. Thus, acute kidney injury by HgCl(2) was found to be mediated mainly by Oat1. Our findings raise the possibility that pharmacological modulation of the expression and/or function of Oat1 might be an effective therapeutic strategy for reducing renal injury by mercury. This is one of the most striking phenotypes so far identified in the Oat1 knock-out. (Eraly, S. A., Vallon, V., Vaughn, D. A., Gangoiti, J. A., Richter, K., Nagle, M., Monte, J. C., Rieg, T., Truong, D. M., Long, J. M., Barshop, B. A., Kaler, G., and Nigam, S. K. (2006) J. Biol. Chem. 281, 5072-5083).  相似文献   

3.
Recent studies implicate a role in hepatocyte organic anion transport of a plasma membrane protein that has been termed oatp1 (organic anion transport protein 1). Little is known regarding mechanisms by which its transport activity is modulated in vivo. In previous studies (Campbell, C. G., Spray, D. C., and Wolkoff, A. W. (1993) J. Biol. Chem. 268, 15399-15404), we demonstrated that hepatocyte uptake of sulfobromophthalein was down-regulated by extracellular ATP. We have now found that extracellular ATP reduces the V(max) for transport of sulfobromophthalein by rat hepatocytes; K(m) remains unaltered. Reduced transport also results from incubation of hepatocytes with the phosphatase inhibitors okadaic acid and calyculin A. Immunoprecipitation of biotinylated cell surface proteins indicates that oatp1 remains on the cell surface after exposure of cells to ATP or phosphatase inhibitor, suggesting that loss of transport activity is not caused by transporter internalization. Exposure of (32)P-loaded hepatocytes to extracellular ATP results in serine phosphorylation of oatp1 with the appearance of a single major tryptic phosphopeptide; oatp1 from control cells is not phosphorylated. This phosphopeptide comigrates with one of four phosphopeptides resulting from incubation of cells with okadaic acid. These studies indicate that the phosphorylation state of oatp1 must be an important consideration when assessing alterations of its functional expression in pathobiological states.  相似文献   

4.
The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of approximately 60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.  相似文献   

5.
Liver X receptors (LXRs) play an important role in the regulation of cholesterol by regulating several transporters. In this study, we investigated the role of LXRs in the regulation of human organic anion transporter 1 (hOAT1), a major transporter localized in the basolateral membrane of the renal proximal tubule. Exposure of renal S2 cells expressing hOAT1 to LXR agonists (TO901317 and GW3965) and their endogenous ligand [22(R)-hydroxycholesterol] led to the inhibition of hOAT1-mediated [(14)C]PAH uptake. This inhibition was abolished by coincubation of the above agonists with 22(S)-hydroxycholesterol, an LXR antagonist. Moreover, it was found that the effect of LXR agonists was not mediated by changes in intracellular cholesterol levels. Interestingly, the inhibitory effect of LXRs was enhanced in the presence of 9-cis retinoic acid, a retinoic X receptor agonist. Kinetic analysis revealed that LXR activation decreased the maximum rate of PAH transport (J(max)) but had no effect on the affinity of the transporter (K(t)). This result correlated well with data from Western blot analysis, which showed the decrease in hOAT1 expression following LXR activation. Similarly, TO901317 inhibited [(14)C]PAH uptake by the renal cortical slices as well as decreasing mOAT1 protein expression in mouse kidney. Our findings indicated for the first time that hOAT1 was downregulated by LXR activation in the renal proximal tubule.  相似文献   

6.
Organic anions are secreted into urine via organic anion transporters across the renal basolateral and apical membranes. However, no apical membrane transporter for organic anions such as p-aminohippuric acid (PAH) has yet been identified. In the present study, we showed that human NPT1, which is present in renal apical membrane, mediates the transport of PAH. The K(m) value for PAH uptake was 2.66 mM and the uptake was chloride ion sensitive. These results are compatible with those reported for the classical organic anion transport system at the renal apical membrane. PAH transport was inhibited by various anionic compounds. Human NPT1 also accepted uric acid, benzylpenicillin, faropenem, and estradiol-17beta-glucuronide as substrates. Considering its chloride ion sensitivity, Npt1 is expected to function for secretion of PAH from renal proximal tubular cells. This is the first molecular demonstration of an organic anion transport function for PAH at the renal apical membrane.  相似文献   

7.
Phospholipases A(2) (PLA(2)) are potent regulators of the inflammatory response. We have observed that Group IV cPLA(2) activity is required for the production of superoxide anion (O(2)(-)) in human monocytes [Li Q., Cathcart M.K. J. Biol. Chem. 272 (4) (1997) 2404-2411.]. We have previously identified PKCalpha as a kinase pathway required for monocyte O(2)(-) production [Li Q., Cathcart M.K. J. Biol. Chem. 269 (26) (1994) 17508-17515.]. We therefore investigated the potential interaction between PKCalpha and cPLA(2) by evaluating the requirement for specific PKC isoenzymes in the process of activating cPLA(2) enzymatic activity and protein phosphorylation upon monocyte activation. We first showed that general PKC inhibitors and antisense oligodeoxyribonucleotides (ODN) to the cPKC group of PKC enzymes inhibited cPLA(2) activity. To distinguish between PKCalpha and PKCbeta isoenzymes in regulating cPLA(2) protein phosphorylation and enzymatic activity, we employed our previously characterized PKCalpha or PKCbeta isoenzyme-specific antisense ODN [Li Q., Subbulakshmi V., Fields A.P., Murray, N.R., Cathcart M.K., J. Biol. Chem. 274 (6) (1999) 3764-3771]. Suppression of PKCalpha expression, but not PKCbeta expression, inhibited cPLA(2) protein phosphorylation and enzymatic activity. Additional studies ruled out a contribution by Erk1/2 to cPLA(2) phosphorylation and activation. We also found that cPLA(2) co-immunoprecipitated with PKCalpha and vice versa. In vitro studies demonstrated that PKCalpha could directly phosphorylate cPLA(2).and enhance enzymatic activity. Finally, we showed that addition of arachidonic acid restored the production of O(2)(-) in monocytes defective in either PKCalpha or cPLA(2) expression. Taken together, our data suggest that PKCalpha, but not PKCbeta, is the predominant cPKC isoenzyme required for cPLA(2) protein phosphorylation and maximal induction of cPLA(2) enzymatic activity upon activation of human monocytes. Our data also support the concept that the requirements for PKCalpha and cPLA(2) in O(2)(-) generation are solely due to their seminal role in generating arachidonic acid.  相似文献   

8.
The human ATP-binding cassette (ABC) transporter, multidrug resistance protein 1 (MRP1/ABCC1), confers resistance to a broad range of anti-cancer agents and transports a variety of organic anions. At present, essentially no structural data exists for MRP1 that might be used to elucidate its mechanism of transport. Consequently, we have applied a modeling strategy incorporating crystal and indirect structural data from other ABC transporters to construct a model of the transmembrane domains of the core region of MRP1 that includes the amino acid side chains. Three conserved Trp residues and one non-conserved Tyr residue, shown previously to be of functional importance (Koike, K., Oleschuk, C. J., Haimeur, A., Olsen, S. L., Deeley, R. G., and Cole, S. P. C. (2002) J. Biol. Chem. 277, 49495-49503), were found to line the "pore" in our model proximal to the membrane cytosol interface. A fifth aromatic residue (Phe594) was identified that, with the Trp and Tyr residues, completed a ring or "basket" of aromatic amino acids and, accordingly, we postulated that it would also be of functional importance. To test this idea, MRP1-Phe594 mutants were expressed in human embryonic kidney cells, and their properties were examined using membrane vesicles. Substitution of Phe594 with Ala substantially reduced or eliminated the transport of five organic anion substrates by MRP1 and abrogated the binding of leukotriene C4. On the other hand, the conservatively substituted F594W and F594Y mutants remained transport competent, although significant substrate- and substitution-specific changes were observed. These studies provide some structural insight into a possible substrate binding/transport site of MRP1 at the beginning of a putative substrate translocation pathway and demonstrate the usefulness of modeling for directing structure-function analyses of this transporter.  相似文献   

9.
Phosphorylation of Bcl2 at serine 70 is required for its potent anti-apoptotic function. We have recently shown that Bcl2 phosphorylation is a dynamic process that involves the protein kinase C alpha and protein phosphatase 2A (PP2A) (Ruvolo, P. P., Deng, X., Carr, B. K., and May, W. S. (1998) J. Biol. Chem. 273, 25436-25442; and Deng, X., Ito, T., Carr, B. K., Mumby, M. C., and May, W. S. (1998) J. Biol. Chem. 273, 34157-34163). The potent apoptotic agent ceramide can activate a PP2A, suggesting that one potential component of the ceramide-induced death signal may involve the inactivation of Bcl2. Results indicate that C2-ceramide but not inactive C2-dihydroceramide, was found to specifically activate a mitochondrial PP2A, which rapidly and completely induced Bcl2 dephosphorylation and correlated closely with ceramide-induced cell death. Using a genetic approach, the gain-of-function S70E Bcl2 mutation, which mimics phosphorylation, fails to undergo apoptosis even with the addition of high doses of ceramide (IC50 > 50 microM). In contrast, cells overexpressing exogenous wild-type Bcl2 were sensitive to ceramide at dosages where PP2A is fully active and Bcl2 would be expected to be dephosphorylated (IC50 = 14 microM). These findings indicate that in cells expressing functional Bcl2, the mechanism of death action for ceramide may involve, at least in part, a mitochondrial PP2A that dephosphorylates and inactivates Bcl2.  相似文献   

10.
11.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   

12.
Activation of protein kinase C (PKC) by phorbol esters or diacylglycerol mimetics induces apoptosis in androgen-dependent prostate cancer cells, an effect that involves both the activation of the classic PKC alpha and the novel PKC delta isozymes (Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caama?o, J., Ohba, M., Kuroki, T., Li, L., Yuspa, S. H., and Kazanietz, M. G. (2000) J. Biol. Chem. 275, 7574-7582 and Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohba, M., Kuroki, T., Han, K. C., Lee, J., Marquez, V. E., and Kazanietz, M. G. (2002) J. Biol. Chem. 277, 645-655). In the present study we explored the signaling events involved in this PKC-mediated effect, using the androgen-dependent LNCaP cell line as a model. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) leads to the activation of ERK1/2, p38 MAPK, and JNK in LNCaP cells. Here we present evidence that p38 MAPK, but not JNK, mediates PKC-induced apoptosis. Because LNCaP cells have hyperactivated Akt function due to PTEN inactivation, we examined whether this survival pathway could be affected by PKC activation. Interestingly, activation of PKC leads to a rapid and reversible dephosphorylation of Akt, an effect that was prevented by the pan-PKC inhibitor GF109302X and the cPKC inhibitor G?6976. In addition, the diacylglycerol mimetic agent HK654, which selectively stimulates PKC alpha in LNCaP cells, also induced the dephosphorylation of Akt in LNCaP cells. Inactivation of Akt function by PKC does not involve the inhibition of PI3K, and it is prevented by okadaic acid, suggesting the involvement of a phosphatase 2A in PMA-induced Akt dephosphorylation. Finally, we show that, when an activated form of Akt is delivered into LNCaP cells by either transient transfection or adenoviral infection, the apoptotic effect of PMA is significantly reduced. Our results highlight a complex array of signaling pathways regulated by PKC isozymes in LNCaP prostate cancer cells and suggest that both p38 MAPK and Akt play critical roles as downstream effectors of PKC isozymes in this cellular model.  相似文献   

13.
Recently, we have demonstrated the phosphorylation- and lipid raft-mediated internalization of the native norepinephrine transporter (NET) following protein kinase C (PKC) activation (Jayanthi, L. D., Samuvel, D. J., and Ramamoorthy, S. (2004) J. Biol. Chem. 279, 19315-19326). Here we tested an hypothesis that PKC-mediated phosphorylation of NET is required for transporter internalization. Phosphoamino acid analysis of 32P-labeled native NETs from rat placental trophoblasts and heterologously expressed wild type human NET (WT-hNET) from human placental trophoblast cells revealed that the phorbol ester (beta-PMA)-induced phosphorylation of NET occurs on serine and threonine residues. Beta-PMA treatment inhibited NE transport, reduced plasma membrane hNET levels, and stimulated hNET phosphorylation in human placental trophoblast cells expressing the WT-hNET. Substance P-mediated activation of the G alpha(q)-coupled human neurokinin 1 (hNK-1) receptor coexpressed with the WT-hNET produced effects similar to beta-PMA via PKC stimulation. In striking contrast, an hNET double mutant harboring T258A and S259A failed to show NE uptake inhibition and plasma membrane redistribution by beta-PMA or SP. Most interestingly, the plasma membrane insertion of the WT-hNET and hNET double mutant were not affected by beta-PMA. Although the WT-hNET showed increased endocytosis and redistribution from caveolin-rich plasma membrane domains following beta-PMA treatment, the hNET double mutant was completely resistant to these PKC-mediated effects. In addition, the PKC-induced phosphorylation of hNET double mutant was significantly reduced. In the absence of T258A and S259A mutations, alanine substitution of all other potential phosphosites within the hNET did not block PKC-induced phosphorylation and down-regulation. These results suggest that Thr-258 and Ser-259 serve as a PKC-specific phospho-acceptor site and that phosphorylation of this motif is linked to PKC-induced NET internalization.  相似文献   

14.
Studies of the organic anion transporters (Oats) have focused mainly on their interactions with organic anionic substrates. However, as suggested when Oat1 was originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471–6478), since the Oats share close homology with organic cation transporters (Octs), it is possible that Oats interact with cations as well. We now show that mouse Oat1 (mOat1) and mOat3 and, to a lesser degree, mOat6 bind a number of “prototypical” Oct substrates, including 1-methyl-4-phenylpyridinium. In addition to oocyte expression assays, we have tested binding of organic cations to Oat1 and Oat3 in ex vivo assays by analyzing interactions in kidney organ cultures deficient in Oat1 and Oat3. We also demonstrate that mOat3 transports organic cations such as 1-methyl-4-phenylpyridinium and cimetidine. A pharmacophore based on the binding affinities of the tested organic cations for Oat3 was generated. Using this pharmacophore, we screened a chemical library and were able to identify novel cationic compounds that bound to Oat1 and Oat3. These compounds bound Oat3 with an affinity higher than the highest affinity compounds in the original set of prototypical Oct substrates. Thus, whereas Oat1, Oat3, and Oat6 appear to function largely in organic anion transport, they also bind and transport some organic cations. These findings could be of clinical significance, since drugs and metabolites that under normal physiological conditions do not bind to the Oats may undergo changes in charge and become Oat substrates during pathologic conditions wherein significant variations in body fluid pH occur.  相似文献   

15.
ATP-binding cassette transporter A1 (ABCA1) plays an essential role in the helical apolipoprotein-mediated assembly of high density lipoprotein, and the apolipoporteins stabilize ABCA1 against calpain-mediated degradation during the reaction ((2002) J. Biol. Chem. 277, 22426-22429). Protein kinase C (PKC) inhibitors suppressed both ABCA1 stabilization and cellular lipid release mediated by apolipoprotein A-I (apoA-I) but not ABCA1 increase by calpain inhibitors. The increase of ABCA1 and the cellular lipid release by apoA-I were both suppressed by a phosphatidylcholine phospholipase C (PC-PLC) inhibitor but not by the inhibitors of phosphatidylinositol-PLC and phosphatidylinositol 3-kinase. A protein phosphatase inhibitor further enhanced the ABCA1 increase by apoA-I. Biochemical and microscopic evidence indicated that apoA-I activated PKC alpha, and phosphorylation of ABCA1 was directly demonstrated by apoA-I via PKC. Finally, digestion of sphingomyelin increased ABCA1, and a PC-PLC inhibitor suppressed it. We conclude that apoA-I activates PKC alpha by PC-PLC-mediated generation of diacylglycerol initiated by the removal of cellular sphingomyelin ((2002) J. Biol. Chem. 277, 44709-44714), and subsequently phosphorylates and stabilizes ABCA1.  相似文献   

16.
Evidence is presented that demonstrated that the 45- and 104-kDa forms of phosphatidate phosphatase from Saccharomyces cerevisiae (Morlock, K. R., McLaughlin, J. J., Lin, Y.-P., and Carman, G. M. (1991) J. Biol. Chem. 266, 3586-3593) were regulated differentially by phosphorylation. Purified 45-kDa phosphatidate phosphatase was phosphorylated by cAMP-dependent protein kinase whereas purified 104-kDa phosphatidate phosphatase was not phosphorylated. cAMP-dependent protein kinase catalyzed the phosphorylation of pure 45-kDa phosphatidate phosphatase at a serine residue which resulted in a stimulation (2.4-fold) of phosphatidate phosphatase activity. Alkaline phosphatase catalyzed the dephosphorylation of pure 45-kDa phosphatidate phosphatase which resulted in an inhibition (1.3-fold) of phosphatidate phosphatase activity. Results of studies using mutants (bcy1 and cyr1) defective in cAMP-dependent protein kinase activity corroborated the results of the phosphorylation studies using pure preparations of phosphatidate phosphatase. The 45-kDa phosphatidate phosphatase phosphorylated in vitro and in vivo had phosphopeptides in common. The activation of the GAL10-RAS2val19 allele in mutant cells resulted in an increase in the synthesis of diacylglycerols and triacylglycerols. These results were consistent with the phosphorylation and activation of 45-kDa phosphatidate phosphatase by cAMP-dependent protein kinase in vivo.  相似文献   

17.
One of the major physiologic functions of erythrocytes is the mediation of chloride-bicarbonate exchange in the transport of carbon dioxide from the tissues to the lungs. The anion exchange is mediated by a typical polytopic transmembrane protein in the cell membrane, designated Band 3. A carboxyl-terminal peptide of Band 3 was affinity-labeled with pyridoxal phosphate, a substrate for the anion transport system, and then sequenced (Kawano, Y., Okubo, K., Tokunaga, F., Miyata, T., Iwanaga, S., and Hamasaki, N. (1988) J. Biol. Chem. 263, 8232-8238). The 10th amino acid residue of the peptide could not be determined, suggesting post-translational modification of the residue. In the present communication, we have investigated the molecular structure of human Band 3 and the COOH-terminal 8500-dalton peptide using gas-liquid chromatography-mass spectrometry. Band 3 was modified covalently by fatty acids and these acids were released from Band 3 by hydroxylamine treatment at either pH 7 or 11, indicating that the linkage between Band 3 and the fatty acid is a thio ester bond. 1 mol of Band 3 interacted with 1 mol of fatty acid at a cysteine residue located 69 residues from the COOH terminus of Band 3. The fatty acids used in the modification were myristate, palmitate, oleate, and stearate, with palmitate being the major component. The esterified site is close to the site affinity-labeled with pyridoxal phosphate (Kawano, Y., Okubo, K., Tokunaga, F., Miyata, T., Iwanaga, S., and Hamasaki, N. (1988) J. Biol. Chem. 263, 8232-8238). The amino acid sequence including the acylation site was Phe-Thr-Gly-Ile-Gln-Ile-Ile-Cys-Leu-Ala-Val-Leu, which is conserved in the G2 protein of Rift Valley fever virus as Phe-Ser-Ser-Ile-Ala-Ile-Ile-Cys-Leu-Ala-Val-Leu. The G2 protein, like Band 3, is a polytopic transmembrane protein. Although acylation of the cysteine residue of G2 protein has not been examined, the Phe-X-X-Ile-X-Ile-Ile-Cys-Leu-Ala-Val-Leu sequence could be a common motif for fatty acylation of certain membrane proteins.  相似文献   

18.
《The Journal of cell biology》1995,128(6):1029-1041
Receptor molecules play a major role in the desensitization of agonist- stimulated cellular responses. For G protein-coupled receptors, rapid desensitization occurs via receptor phosphorylation, sequestration, and internalization, yet the cellular compartments in which these events occur and their interrelationships are unclear. In this work, we focus on the cholecystokinin (CCK) receptor, which has been well characterized with respect to phosphorylation. We have used novel fluorescent and electron-dense CCK receptor ligands and an antibody to probe receptor localization in a CCK receptor-bearing CHO cell line. In the unstimulated state, receptors were diffusely distributed over the plasmalemma. Agonist occupation stimulated endocytosis via both clathrin-dependent and independent pathways. The former was predominant, leading to endosomal and lysosomal compartments, as well as recycling to the plasmalemma. The clathrin-independent processes led to a smooth vesicular compartment adjacent to the plasmalemma resembling caveolae, which did not transport ligand deeper within the cell. Potassium depletion largely eliminated clathrin-dependent endocytosis, while not interfering with agonist-stimulated receptor movement into subplasmalemmal smooth vesicle compartments. These cellular endocytic events can be related to the established cycle of CCK receptor phosphorylation and dephosphorylation, which we have previously described (Klueppelberg, U. G., L. K. Gates, F. S. Gorelick, and L. J. Miller. 1991. J. Biol. Chem. 266:2403-2408; Lutz, M. P., D. I. Pinon, L. K. Gates, S. Shenolikar, and L. J. Miller. 1993. J. Biol. Chem. 268:12136-12142). The rapid onset and peak of receptor phosphorylation after agonist occupation correlates best with a plasmalemmal localization, while stimulated receptor phosphatase activity correlates best with receptor residence in intracellular compartments. We postulate that the smooth vesicular compartment adjacent to the plasmalemma functions for the rapid resensitization of the receptor, while the classical clathrin-mediated endocytotic pathway is key for receptor downregulation via lysosomal degradation, as well as less rapid resensitization.  相似文献   

19.
Feng B  Dresser MJ  Shu Y  Johns SJ  Giacomini KM 《Biochemistry》2001,40(18):5511-5520
Organic anion transporters (OATs) and organic cation transporters (OCTs) mediate the flux of xenobiotics across the plasma membranes of epithelia. Substrates of OATs generally carry negative charge(s) whereas substrates of OCTs are cations. The goal of this study was to determine the domains and amino acid residues essential for recognition and transport of organic anions by the rat organic anion transporter, rOAT3. An rOAT3/rOCT1 chimera containing transmembrane domains 1-5 of rOAT3 and 6-12 of rOCT1 retained the specificity of rOCT1, suggesting that residues involved in substrate recognition reside within the carboxyl-terminal half of these transporters. Mutagenesis of a conserved basic amino acid residue, arginine 454 to aspartic acid (R454D), revealed that this amino acid is required for organic anion transport. The uptakes of p-aminohippurate (PAH), estrone sulfate, and ochratoxin A were approximately 10-, approximately 48-, and approximately 32-fold enhanced in oocytes expressing rOAT3 and were only approximately 2-, approximately 6-, and approximately 5-fold enhanced for R454D. Similarly, mutagenesis of the conserved lysine 370 to alanine (K370A) suggested that K370 is important for organic anion transport. Interestingly, the charge specificity of the double mutant, R454DK370A, was reversed in comparison to rOAT3-R454DK370A preferentially transported the organic cation, MPP(+), in comparison to PAH (MPP(+) uptake/PAH uptake = 3.21 for the double mutant vs 0.037 for rOAT3). These data indicate that arginine 454 and lysine 370 are essential for the anion specificity of rOAT3. The studies provide the first insights into the molecular determinants that are critical for recognition and translocation of organic anions by a member of the organic anion transporter family.  相似文献   

20.
Phosphorylation by cAMP-dependent protein kinase (PKA) regulates a vast number of cellular functions. An important target for PKA in brain and heart is the class C L-type Ca(2+) channel (Ca(v)1.2). PKA phosphorylates serine 1928 in the central, pore-forming alpha(1C) subunit of this channel. Regulation of channel activity by PKA requires a proper balance between phosphorylation and dephosphorylation. For fast and specific signaling, PKA is recruited to this channel by an protein kinase A anchor protein (Davare, M. A., Dong, F., Rubin, C. S., and Hell, J. W. (1999) J. Biol. Chem. 274, 30280-30287). A phosphatase may be associated with the channel to effectively balance serine 1928 phosphorylation by channel-bound PKA. Dephosphorylation of this site is mediated by a serine/threonine phosphatase that is inhibited by okadaic acid and microcystin. We show that immunoprecipitation of the channel complex from rat brain results in coprecipitation of PP2A. Stoichiometric analysis indicates that about 80% of the channel complexes contain PP2A. PP2A directly and stably binds to the C-terminal 557 amino acids of alpha(1C). This interaction does not depend on serine 1928 phosphorylation and is not altered by PP2A catalytic site inhibitors. These results indicate that the PP2A-alpha(1C) interaction constitutively recruits PP2A to the channel complex rather than being a transient substrate-catalytic site interaction. Functional assays with the immunoisolated class C channel complex showed that channel-associated PP2A effectively reverses serine 1928 phosphorylation by endogenous PKA. Our findings demonstrate that both PKA and PP2A are integral components of the class C L-type Ca(2+) channel that determine the phosphorylation level of serine 1928 and thereby channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号