首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The product of the EUG1 gene of Saccharomyces cerevisiae is a soluble endoplasmic reticulum protein with homology to both the mammalian protein disulfide isomerase (PDI) and the yeast PDI homolog encoded by the essential PDI1 gene. Deletion or overexpression of EUG1 causes no growth defects under a variety of conditions. EUG1 mRNA and protein levels are dramatically increased in response to the accumulation of native or unglycosylated proteins in the endoplasmic reticulum. Overexpression of the EUG1 gene allows yeast cells to grow in the absence of the PDI1 gene product. Depletion of the PDI1 protein in Saccharomyces cerevisiae causes a soluble vacuolar glycoprotein to accumulate in its endoplasmic reticulum form, and this phenotype is only partially relieved by the overexpression of EUG1. Taken together, our results indicate that PDI1 and EUG1 encode functionally related proteins that are likely to be involved in interacting with nascent polypeptides in the yeast endoplasmic reticulum.  相似文献   

2.
J Toyn  A R Hibbs  P Sanz  J Crowe    D I Meyer 《The EMBO journal》1988,7(13):4347-4353
Mutants defective in the ability to translocate proteins across the membrane of the endoplasmic reticulum were selected in Trp- Saccharomyces cerevisiae on the basis of their ability to retain a fusion protein in the cytosol. The fusion comprised the prepro region of prepro-alpha-factor (MF alpha 1) N-terminal to phosphoribosyl anthranilate isomerase (TRP1). The first of the protein translocation mutations, called ptl1, results in temperature-sensitivity of growth and protein translocation. At the non-permissive temperature, precursors to several secretory proteins accumulate in the cytosol. Using this mutant, we demonstrate that the prepro-carboxypeptidase Y that had been accumulated in the cytosol at the non-permissive temperature could be post-translationally translocated into the endoplasmic reticulum when cells were returned to the permissive temperature. This result indicates that post-translational translocation of preproteins across endoplasmic reticulum membranes can occur in vivo. We have also determined that the temperature-sensitive component is membrane-associated in ptl1, and that the membranes derived from this strain show a reversible temperature-sensitive translocation phenotype in vitro.  相似文献   

3.
4.
We describe an in vitro system with all components derived from the yeast Saccharomyces cerevisiae that can translocate a yeast secretory protein across microsomal membranes. In vitro transcribed prepro-alpha-factor mRNA served to program a membrane-depleted yeast translation system. Translocation and core glycosylation of prepro-alpha-factor were observed when yeast microsomal membranes were added during or after translation. A membrane potential is not required for translocation. However, ATP is required for translocation and nonhydrolyzable analogues of ATP cannot serve as a substitute. These findings suggest that ATP hydrolysis may supply the energy required for translocation of proteins across the endoplasmic reticulum.  相似文献   

5.
The acquisition of the correct folding of membrane proteins is a crucial process that involves several steps from the recognition of nascent protein, its targeting to the endoplasmic reticulum membrane, its insertion, and its sorting to its final destination. Yarrowia lipolytica is a hemiascomycetous dimorphic yeast and an alternative eukaryotic yeast model with an efficient secretion pathway. To better understand the quality control of membrane proteins, we constructed a model system based on the uracil permease. Mutated forms of the permease were stabilized and retained in the cell and made the strains resistant to the 5-fluorouracil drug. To identify proteins involved in the quality control, we separated proteins extracted in nondenaturing conditions on blue native gels to keep proteins associated in complexes. Some gel fragments where the model protein was immunodetected were subjected to mass spectrometry analysis. The proteins identified gave a picture of the folding proteome, from the translocation across the endoplasmic reticulum membrane, the folding of the proteins, to the vesicle transport to Golgi or the degradation via the proteasome. For example, EMC complex, Gsf2p or Yet3p, chaperone membrane proteins of the endoplasmic reticulum were identified in the Y. lipolytica native proteome.  相似文献   

6.
In several organisms, including Saccharomyces cerevisiae and other yeast species, the product encoded by the SEC61 gene is considered to be the core element of the translocation apparatus within the endoplasmic reticulum membrane through which translocation of secretory and membrane proteins occurs. In this study, we have cloned and characterized the homolog of the SEC61 gene from the yeast Pichia anomala. The cloned gene includes an ORF, interrupted after the first ten nucleotides by an intron of 131 bp, encoding a 479-amino acid putative polypeptide exhibiting homology to the products encoded by different eukaryotic SEC61 genes, particularly to those from other yeast species. We show that the P. anomala SEC61 gene is correctly processed (intron splicing) when expressed in S. cerevisiae and that it is able to complement the thermosensitive phenotype associated with a mutation in the S. cerevisiae SEC61 gene.  相似文献   

7.
L Hicke  R Schekman 《The EMBO journal》1989,8(6):1677-1684
The SEC23 gene product (Sec23p) is required for transport of secretory, plasma membrane, and vacuolar proteins from the endoplasmic reticulum to the Golgi complex in Saccharomyces cerevisiae. Molecular cloning and biochemical characterization demonstrate that Sec23p is an 84 kd unglycosylated protein that resides on the cytoplasmic surface of a large structure, possibly membrane or cytoskeleton. Vigorous homogenization of yeast cells or treatment of yeast lysates with reagents that desorb peripheral membrane proteins releases Sec23p in a soluble form. Protein transport from the endoplasmic reticulum to the Golgi in vitro depends upon active Sec23p. Thermosensitive transport in sec23 mutant lysates is restored to normal when a soluble form of wild-type Sec23p is added, providing a biochemical complementation assay for Sec23p function. Gel filtration of yeast cytosol indicates that functional Sec23p is a large oligomer or part of a multicomponent complex.  相似文献   

8.
Oxidizing conditions must be maintained in the endoplasmic reticulum (ER) to allow the formation of disulfide bonds in secretory proteins. Here we report the cloning and characterization of a mammalian gene (ERO1-L) that shares extensive homology with the Saccharomyces cerevisiae ERO1 gene, required in yeast for oxidative protein folding. When expressed in mammalian cells, the product of the human ERO1-L gene co-localizes with ER markers and displays Endo-H-sensitive glycans. In isolated microsomes, ERO1-L behaves as a type II integral membrane protein. ERO1-L is able to complement several phenotypic traits of the yeast thermosensitive mutant ero1-1, including temperature and dithiothreitol sensitivity, and intrachain disulfide bond formation in carboxypeptidase Y. ERO1-L is no longer functional when either one of the highly conserved Cys-394 or Cys-397 is mutated. These results strongly suggest that ERO1-L is involved in oxidative ER protein folding in mammalian cells.  相似文献   

9.
We previously characterized the SLS1 gene in the yeast Yarrowia lipolytica and showed that it interacts physically with YlKar2p to promote translocation across the endoplasmic-reticulum membrane (A. Boisramé, M. Kabani, J. M. Beckerich, E. Hartmann, and C. Gaillardin, J. Biol. Chem. 273:30903-30908, 1998). A Y. lipolytica Kar2p mutant was isolated that restored interaction with an Sls1p mutant, suggesting that the interaction with Sls1p could be nucleotide and/or conformation dependent. This result was used as a working hypothesis for more accurate investigations in Saccharomyces cerevisiae. We show by two-hybrid an in vitro assays that the S. cerevisiae homologue of Sls1p interacts with ScKar2p. Using dominant lethal mutants of ScKar2p, we were able to show that ScSls1p preferentially interacts with the ADP-bound conformation of the molecular chaperone. Synthetic lethality was observed between DeltaScsls1 and translocation-deficient kar2 or sec63-1 mutants, providing in vivo evidence for a role of ScSls1p in protein translocation. Synthetic lethality was also observed with ER-associated degradation and folding-deficient kar2 mutants, strongly suggesting that Sls1p functions are not restricted to the translocation process. We show that Sls1p stimulates in a dose-dependent manner the binding of ScKar2p on the lumenal J domain of Sec63p fused to glutathione S-transferase. Moreover, Sls1p is shown to promote the Sec63p-mediated activation of Kar2p's ATPase activity. Our data strongly suggest that Sls1p could be the first GrpE-like protein described in the endoplasmic reticulum.  相似文献   

10.
将解脂耶氏酵母与蛋白质分泌有关的TSR1基因编码区部分缺失的DNA片段转化一株解脂耶氏酵母,通过体内同源重组,部分缺失的外源tsr1片段取代了酵母染色体上的正常的TSR1基因,从而获得tsr1的转化子。Southern杂交结果表明,用该法成功地构建了tsr1突变体,这为进一步研究解脂耶氏酵母TSR1基因的功能奠定了基础。  相似文献   

11.
The major phosphate-repressible acid phosphatase (APase) of Saccharomyces cerevisiae, a cell wall glycoprotein, has been extensively used as a reporter protein to analyse successive steps in the yeast secretory pathway. In contrast to other yeast secretory proteins, APase can still be translocated into the endoplasmic reticulum (ER) even when it is made without its signal peptide. This property illustrates the permissiveness of targeting to the ER in yeast. Studies on APase-containing hybrid proteins have provided some of the evidence that specific soluble factors must interact with secretory proteins prior to their translocation across the ER membrane. A systematic analysis of mutations affecting the sequence of the APase signal peptide cleavage site demonstrated that cleavage occurs only when the last amino acid of the signal sequence is small and neutral. This was one of the first studies to verify the requirements for signal peptidase cleavage that had previously only been predicted from statistical analysis. Studies performed either with inhibitors of glycosylation or with mutant APases demonstrated the critical role of core glycosylation for APase folding, which is essential for efficient transport beyond the ER. Following the fate of particular modified APases along the secretory pathway provided insights into some general properties of the secretory apparatus and illustrated the specific requirements for a given protein during its intracellular traffic.  相似文献   

12.
The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often restricted due to the limitations of the host strain. In the protein secretory pathway, the protein trafficking between different organelles is catalyzed by the soluble NSF (N-ethylmaleimide-sensitive factor) receptor (SNARE) complex and regulated by the Sec1/Munc18 (SM) proteins. In this study, we report that over-expression of the SM protein encoding genes SEC1 and SLY1, improves the protein secretion in S. cerevisiae. Engineering Sec1p, the SM protein that is involved in vesicle trafficking from Golgi to cell membrane, improves the secretion of heterologous proteins human insulin precursor and α-amylase, and also the secretion of an endogenous protein invertase. Enhancing Sly1p, the SM protein regulating the vesicle fusion from endoplasmic reticulum (ER) to Golgi, increases α-amylase production only. Our study demonstrates that strengthening the protein trafficking in ER-to-Golgi and Golgi-to-plasma membrane process is a novel secretory engineering strategy for improving heterologous protein production in S. cerevisiae.  相似文献   

13.
In mammalian cells, the signal recognition particle (SRP) receptor is required for the targeting of nascent secretory proteins to the endoplasmic reticulum (ER) membrane. We have identified the Saccharomyces cerevisiae homologue of the alpha-subunit of the SRP receptor (SR alpha) and characterized its function in vivo. S. cerevisiae SR alpha is a 69-kDa peripheral membrane protein that is 32% identical (54% chemically similar) to its mammalian homologue and, like mammalian SR alpha, is predicted to contain a GTP binding domain. Yeast cells that contain the SR alpha gene (SRP101) under control of the GAL1 promoter show impaired translocation of soluble and membrane proteins across the ER membrane after depletion of SR alpha. The degree of the translocation defect varies for different proteins. The defects are similar to those observed in SRP deficient cells. Disruption of the SRP101 gene results in an approximately sixfold reduction in the growth rate of the cells. Disruption of the gene encoding SRP RNA (SCR1) or both SCR1 and SRP101 resulted in an indistinguishable growth phenotype, indicating that SRP receptor and SRP function in the same pathway. Taken together, these results suggest that the components and the mechanism of the SRP-dependent protein targeting pathway are evolutionarily conserved yet not essential for cell growth. Surprisingly, cells that are grown for a prolonged time in the absence of SRP or SRP receptor no longer show pronounced protein translocation defects. This adaptation is a physiological process and is not due to the accumulation of a suppressor mutation. The degree of this adaptation is strain dependent.  相似文献   

14.
Several approaches are currently being taken to elucidate the mechanisms and the molecular components responsible for protein targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems dominate the field: a biochemical system derived from mammalian exocrine pancreas, and a combined genetic and biochemical system employing the yeast, Saccharomyces cerevisiae. Results obtained in each of these systems have contributed novel, mostly non-overlapping information. Recently, much effort in the field has been dedicated to identifying membrane proteins that comprise the translocon. Membrane proteins involved in translocation have been identified both in the mammalian system, using a combination of crosslinking and reconstitution approaches, and in S. cerevisiae, by selecting for mutants in the translocation pathway. None of the membrane proteins isolated, however, appears to be homologous between the two experimental systems. In the case of the signal recognition particle, the two systems have converged, which has led to a better understanding of how proteins are targeted to the endoplasmic reticulum membrane.  相似文献   

15.
SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.  相似文献   

16.
The SEC14SC gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of Saccharomyces cerevisiae. The SEC14SC gene product (SEC14pSC) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14YL, the structural gene for the PI/PC-TP of the dimorphic yeast Yarrowia lipolytica. SEC14YL encodes a primary translation product (SEC14YL) that is predicted to be a 497-residue polypeptide of which the amino- terminal 300 residues are highly homologous to the entire SEC14pSC, and the carboxyl-terminal 197 residues define a dispensible domain that is not homologous to any known protein. In a manner analogous to the case for SEC14pSC, SEC14pYL localizes to punctate cytoplasmic structures in Y. lipolytica that likely represent Golgi bodies. However, SEC14pYL is neither required for the viability of Y. lipolytica nor is it required for secretory pathway function in this organism. This nonessentiality of SEC14pYL for growth and secretion is probably not the consequence of a second PI/PC-TP activity in Y. lipolytica as cell-free lysates prepared from delta sec14YL strains are devoid of measurable PI/PC-TP activity in vitro. Phenotypic analyses demonstrate that SEC14pYL dysfunction results in the inability of Y. lipolytica to undergo the characteristic dimorphic transition from the yeast to the mycelial form that typifies this species. Rather, delta sec14YL mutants form aberrant pseudomycelial structures as cells enter stationary growth phase. The collective data indicate a role for SEC14pYL in promoting the differentiation of Y. lipolytica cells from yeast to mycelia, and demonstrate that PI/PC-TP function is utilized in diverse ways by different organisms.  相似文献   

17.
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchored protein transport"), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Delta dgt1Delta cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non-GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Delta dgt1Delta cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Delta dgt1Delta cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.  相似文献   

18.
Prepro-alpha-factor has a cleavable signal sequence   总被引:11,自引:0,他引:11  
MAT alpha Saccharomyces cerevisiae secrete a small peptide mating pheromone termed alpha-factor. Its precursor, prepro-alpha-factor, is translocated into the endoplasmic reticulum and glycosylated at three sites. The glycosylated form is the major product in a yeast in vitro translation/translocation system. However, there is another translocated, nonglycosylated product that contains a previously unidentified modification. Contrary to previous results suggesting that the signal sequence of prepro-alpha-factor is not cleaved, amino-terminal radiosequencing has identified this product as prepro-alpha-factor without its signal sequence, that is, pro-alpha-factor. The translocated, glycosylated proteins are also processed by signal peptidase. Moreover, we have found that both purified eukaryotic and prokaryotic signal peptidase can process prepro-alpha-factor. Experiments using a yeast secretory mutant (sec 18) blocked in transport from the endoplasmic reticulum to the Golgi indicate that the protein is also cleaved in vivo. Finally, characterization of the Asn-linked oligosaccharide present on pro-alpha-factor in the yeast in vitro system by use of specific glucosidase and mannosidase inhibitors indicates that they have had the three terminal glucoses and probably one mannose removed. Therefore they most likely consist of Man8GlcNAc2 structures, identical to those found in the endoplasmic reticulum in vivo.  相似文献   

19.
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.  相似文献   

20.
We have shown that hybrid proteins composed of the yeast repressible acid phosphatase (PHO5) and bacterial beta-galactosidase (lacZ) interfere with secretion of native acid phosphatase (Wolfe, P. B. (1988) J. Biol. Chem. 263, 6908-6915). We now report that PHO5-LacZ hybrid proteins have a more general effect on secretion and prevent translocation of several secreted proteins. Translocation of both the mating pheromone alpha-factor and the vacuolar protease carboxypeptidase Y is partially blocked when PHO5-LacZ hybrids are expressed. Cell fractionation and protease sensitivity indicate that alpha-factor and carboxypeptidase Y accumulate in precursor form on the cytoplasmic surface of the endoplasmic reticulum. Indirect immunofluorescence with antibody directed against beta-galactosidase supports the localization of hybrid proteins to the endoplasmic reticulum. Analysis of the hybrid protein phenotype in vivo and in vitro suggests that the hybrid proteins deplete a soluble factor required for efficient translocation across the endoplasmic reticulum. First, a decrease in the expression of a hybrid protein in vivo decreases its effect on translocation. Second, an in vitro translation/translocation reaction, prepared from a hybrid-bearing strain, is deficient in its ability to translocate prepro-alpha-factor across yeast microsomal membranes. This deficiency is complemented by addition of cytosol prepared from wild type cells. Finally, the hybrid protein phenotype is shown to be independent of the requirement for SSA gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号