首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic modifications in plants: an evolutionary perspective   总被引:1,自引:0,他引:1  
Plant genomes are modified by an array of epigenetic marks that help regulate plant growth and reproduction. Although plants share many epigenetic features with animals and fungi, some epigenetic marks are unique to plants. In different organisms, the same epigenetic mark can play different roles and/or similar functions can be carried out by different epigenetic marks. Furthermore, while the enzymatic systems responsible for generating or eliminating epigenetic marks are often conserved, there are also cases where they are quite divergent between plants and other organisms. DNA methylation and methylation of histone tails on the lysine 4, 9, and 27 positions are among the best characterized epigenetic marks in both plants and animals. Recent studies have greatly enhanced our knowledge about the pattern of these marks in various genomes and provided insights into how they are established and maintained and how they function. This review focuses on the conservation and divergence of the pathways that mediate these four types of epigenetic marks.  相似文献   

2.
3.
Models of a dual inheritance system   总被引:1,自引:0,他引:1  
In higher plants, animals and fungi, there are two inheritance systems: the familiar system, depending on DNA sequence, used in transmitting information between sexual generations, and an epigenetic inheritance system, depending on gene activation, responsible for the transmission of states of differentiation during development. Occasionally, epigenetic changes are transmitted in sexual reproduction. A formal model of such a dual inheritance system is presented, and it is shown how the separation between the two systems can sometimes break down. The evolutionary significance of such breakdowns is discussed.  相似文献   

4.
5.
Epigenetic regulation in plant abiotic stress responses   总被引:2,自引:0,他引:2  
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.  相似文献   

6.
Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.  相似文献   

7.
8.
Synthetic biology uses biological components to engineer new functionality in living organisms. We have used the tools of synthetic biology to engineer detector plants that can sense man-made chemicals, such as the explosive trinitrotoluene, and induce a response detectable by eye or instrumentation. A goal of this type of work is to make the designed system orthogonal, that is, able to function independently of systems in the host. In this review, the design and function of two partially synthetic signaling pathways for use in plants is discussed. We describe observed interactions (crosstalk) with endogenous signaling components. This crosstalk can be beneficial, allowing the creation of hybrid synthetic/endogenous signaling pathways, or detrimental, resulting in system noise and/or false positives. Current approaches in the field of synthetic biology applicable to the design of orthogonal signaling systems, including the design of synthetic components, partially synthetic systems that utilize crosstalk to signal through endogenous components, computational redesign of proteins, and the use of heterologous components, are discussed.  相似文献   

9.
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.  相似文献   

10.
Plants interact with their environment by modifying gene expression patterns. One mechanism for this interaction involves epigenetic modifications that affect a number of aspects of plant growth and development. Thus, the epigenome is highly dynamic in response to environmental cues and developmental changes. Flowering is controlled by a set of genes that are affected by environmental conditions through an alteration in their expression pattern. This ensures the production of flowers even when plants are growing under adverse conditions, and thereby enhances transgenerational seed production. In this review recent findings on the epigenetic changes associated with flowering in Arabidopsis thaliana grown under abiotic stress conditions such as cold, drought, and high salinity are discussed. These epigenetic modifications include DNA methylation, histone modifications, and the production of micro RNAs (miRNAs) that mediate epigenetic modifications. The roles played by the phytohormones abscisic acid (ABA) and auxin in chromatin remodelling are also discussed. It is shown that there is a crucial relationship between the epigenetic modifications associated with floral initiation and development and modifications associated with stress tolerance. This relationship is demonstrated by the common epigenetic pathways through which plants control both flowering and stress tolerance, and can be used to identify new epigenomic players.  相似文献   

11.
Cancer is controlled not only by genetic events but also by epigenetic events. The active acquisition of epigenetic changes is a poorly understood but very important process in mammalian development, differentiation, and disease. It is well established that epigenetic events are controlled by a specific subgroup of proteins, such as DNA methyltransferases, histone acetylases histone lysine methyltransferases or histone deacetylases, that influence methylation or acetylation patterns to modulate gene expression. We and others have identified S‐adenosylhomocysteine hydrolase in a high‐throughput genetic screen focused on discovering novel genes whose inhibition induces immortalisation of primary cells. Herein, we address the importance of genes involved in epigenetic mechanisms during senescence and how their effects might determine senescence bypass and immortalisation. The ways in which genes that regulate epigenetic mechanisms might modulate senescence/immortalisation and how these pathways could influence cancer development are explored. Overall, epigenetic modifications seem to play a major role in cancer, influencing tumour outcome by interfering with key senescence pathways.  相似文献   

12.
植物抗盐分子机制及作物遗传改良耐盐性的研究进展   总被引:2,自引:0,他引:2  
盐胁迫是全球农业生产上的一个主要逆境因子。解析耐盐分子机制有助于培育耐盐能力提高的作物新品种。我们综述了植物对盐胁迫的感应及信号传导、主要Na^+运输体、盐胁迫下的解毒途径以及耐盐途径中涉及到的表观遗传研究。此外,我们还讨论了利用遗传改良手段提高作物耐盐性的研究进展。  相似文献   

13.
In eukaryotes, epigenetic-based mechanisms are involved in almost all the important biological processes. Amongst different epigenetic regulation pathways, the dynamic covalent modifications on histones are the most extensively investigated and characterized types. The covalent modifications on histone can be “read” by specific protein domains and then subsequently trigger downstream signaling events. Plants generally possess epigenetic regulation systems similar to animals and fungi, but also exhibit some plant-specific features. Similar to animals and fungi, plants require distinct protein domains to specifically “read” modified histones in both modification-specific and sequence-specific manners. In this review, we will focus on recent progress of the structural studies on the recognition of the epigenetic marks on histones by plant reader proteins, and further summarize the general and exceptional features of plant histone mark readers.  相似文献   

14.
Nitrogen (N) is an essential macronutrient and a signal that has profound impacts on plant growth and development. In order to cope with changing N regimes in the soil, plants have developed complex regulatory mechanisms that involve short-range and long-range signaling pathways. These pathways act at the cellular and whole plant scale to coordinate plant N metabolism, growth and development according to external and internal N status. Although molecular components of local and systemic N signaling have been identified and characterized, an integrated view of how plants coordinate and organize the N response is still lacking. In this review, we discuss recent advances toward understanding the mechanisms of local and systemic N responses and provide an integrated model for how these responses are orchestrated.  相似文献   

15.
The challenges and opportunities for protecting agricultural production of food and other materials will be met through exploiting the induction of defence pathways in plants to control pests, diseases and weeds. These approaches will involve processes that can be activated by application of natural products, patented in terms of this use, to "switch on" defence pathways. Already, a number of secondary metabolite defence compounds are known for which the pathways are conveniently clustered genomically, e.g. the benzoxazinoids (hydroxamic acids) and the avenacins. For the former, it is shown that the small molecular weight lipophilic activator cis-jasmone can induce production of these compounds and certain genes within the pathway. Numerous groups around the world work on inducible defence systems. The science is rapidly expanding and involves studying the interacting components of defence pathways and the switching mechanisms activated by small molecular weight lipophilic compounds. Examples are described of how plant breeding can exploit these systems and how heterologous gene expression will eventually give rise to a new range of GM crops for food and energy, without the need for external application of synthetic pesticides.  相似文献   

16.
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

17.
Sensing environmental changes and initiating a gene expression response are important for plants as sessile autotrophs. The ability of epigenetic status to alter rapidly and reversibly could be a key component to the flexibility of plant responses to the environment. The involvement of epigenetic mechanisms in the response to environmental cues and to different types of abiotic stresses has been documented. Different environmental stresses lead to altered methylation status of DNA as well as modifications of nucleosomal histones. Understanding how epigenetic mechanisms are involved in plant response to environmental stress is highly desirable, not just for a better understanding of molecular mechanisms of plant stress response but also for possible application in the genetic manipulation of plants. In this review, we highlight our current understanding of the epigenetic mechanisms of chromatin modifications and remodeling, with emphasis on the roles of specific modification enzymes and remodeling factors in plant abiotic stress responses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

18.
安颢敏  刘文  王小平 《昆虫学报》2021,64(4):510-522
滞育是昆虫躲避不良环境的一种策略,对延续昆虫种群具有重要意义.特别是昆虫的兼性滞育,能够受环境的周期性季节变化影响,表观遗传可能在其中扮演重要角色.表观遗传是不依赖DNA序列改变所产生的可遗传变异,包括DNA、RNA、蛋白质和染色质水平上的各种表观遗传调控过程,可能参与生物的发育可塑性.昆虫滞育表观遗传调控主要包括两个...  相似文献   

19.
20.
Nucleo-cytoplasmic transport of proteins and RNA in plants   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号