首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the ability of consumer-resource theory to predict direct and indirect interactions among species, using an experimental system of insect herbivores and herbaceous plants. Specifically, we examined interactions among three species of grasshoppers (Melanoplus femur-rubrum, Spharagemon collare, andPhoetaliotes nebrascensis; Orthoptera, Acrididae) and herbaceous plants in experimental field cages placed over existing fertilized or unfertilized vegetation in a Minnesota old field. For the conditions inside these cages, we addressed whether (1) grasshopper diet predicted the presence of competition among grasshopper species, and (2) direct effects of grasshoppers on plants produced indirect interactions among plants, grasshoppers and soil nitrogen. Overall,M. femur-rubrum ate a greater proportion of forbs in cages, while the other two species ate primarily grasses. As expected, a pair of grasshopper species competed if they had similar diets. However, there were important exceptions that could be explained from observed indirect effects, although alternative explanations were also possible. First, all three grasshopper species significantly shifted their diets in the presence of other species, and these shifts occurred most often when competition was expected or occurred. Second, the two grassfeeding species reduced the biomass of the dominant grass (Schizachyrium scoparium) and increased available soil nitrogen and biomass of forbs. This effect may explain why the grass-feedingP. nebrascensis had a positive effect on the forb-feedingM. femur-rubrum on unfertilized plots. Overall, we show that direct effects of consumers on resources can predict competition and other important indirect interactions within a community.  相似文献   

2.
1. Various formulations of the nutrient stress hypothesis predict that insect herbivore populations will respond positively to increased nutrient quality of host plants, especially dietary nitrogen. Survival and reproduction by adult females of two grasshopper species [Acrididae;Melanoplus sanguinipes (Fabricius) and Phoetaliotes nebrascensis (Thomas)] were evaluated in response to defined diets that varied factorially in both total nitrogen (1–7%) and total soluble carbohydrate (4.3–26.7%). These grasshopper species coexist naturally but are typically shifted phenologically so that specific developmental stages normally encounter host plants of different nutritional quality under natural conditions. 2. Demographic responses by adult females of both species varied according to diet quality, but not in the same fashion. Diet quality affected survival significantly in P. nebrascensis but not in M. sanguinipes. Survival in P. nebrascensis was greatest on diets containing the lowest nitrogen concentrations; carbohydrate level had no effect. 3. Diet quality influenced reproduction significantly in both species. Egg production rate (eggs/day) in M. sanguinipes exhibited a negative linear response to increased carbohydrate, coupled with a significant quadratic response to nitrogen that reached a maximum at an intermediate level of about 4% total N. A significant quadratic response to total N for pod production rate (indicating the timing of reproduction) was also observed. Clutch size in M. sanguinipes exhibited a negative relationship with total carbohydrate in the diet, but no response to nitrogen. No interaction was observed between nitrogen and carbohydrate levels. For P. nebrascensis, response to diet quality was much weaker, with only a suggestive maximum at 4% total-N for both egg production rate (eggs/day) and clutch size (eggs/pod) and a suggestive linear response for pod production rate as carbohydrate level increased. Female body weight did not contribute to any reproductive response as a covariate variable. 4. Combined with a similar, previous analysis of demographic responses by the grass-feeding grasshopper, Ageneotettix deorum, these results challenge the ability to draw generalizations about host plant nutritional quality and grasshopper demographic responses. These three grasshopper species respond quite differently to defined diets that vary in total nitrogen and carbohydrate levels. Thus, although host plant quality can contribute significantly to grasshopper population responses, a uniform explanation is not likely.  相似文献   

3.
We examined the effects of CO2 and defoliation on tree chemistry and performance of the forest tent caterpillar, Malacosoma disstria. Quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees were grown in open-top chambers under ambient or elevated concentrations of CO2. During the second year of growth, half of the trees were exposed to free-feeding forest tent caterpillars, while the remaining trees served as nondefoliated controls. Foliage was collected weekly for phytochemical analysis. Insect performance was evaluated on foliage from each of the treatments. At the sampling date coincident with insect bioassays, levels of foliar nitrogen and starch were lower and higher, respectively, in high CO2 foliage, and this trend persisted throughout the study. CO2-mediated increases in secondary compounds were observed for condensed tannins in aspen and gallotannins in maple. Defoliation reduced levels of water and nitrogen in aspen but had no effect on primary metabolites in maple. Similarly, defoliation induced accumulations of secondary compounds in aspen but not in maple. Larvae fed foliage from the enriched CO2 or defoliated treatments exhibited reduced growth and food processing efficiencies, relative to larvae on ambient CO2 or nondefoliated diets, but the patterns were host species-specific. Overall, CO2 and defoliation appeared to exert independent effects on foliar chemistry and forest tent caterpillar performance.  相似文献   

4.
Livestock grazing can have a strong impact on herbivore abundance, distribution and community. However, not all species of herbivores respond the same way to livestock grazing, and we still have a poor understanding of the underlying mechanisms driving these differential responses. Here, we investigate the effect of light intensity cattle grazing on the abundance of two grasshoppers (Euchorthippus cheui and E. unicolor) that co-occur in the same grasslands and feed on the same food plant (the dominant grass Leymus chinensis). The two grasshopper species differ in phenology so that their peak abundances are separated into early- and late-growing seasons. We used an exclosure experiment to monitor grasshopper abundance and food quality in the field under grazed and ungrazed conditions, and performed feeding trials to examine grasshopper preference for grazed or ungrazed food plants in the laboratory. We found that the nitrogen content of L. chinensis leaves continuously declined in the ungrazed areas, but was significantly enhanced by cattle grazing over the growing season. Cattle grazing facilitated the early-season grasshopper E. cheui, whereas it suppressed the late-season grasshopper E. unicolor. Moreover, feeding trials showed that E. cheui preferred L. chinensis from grazed plots, while E. unicolor preferred the leaves from ungrazed plots. We conclude that livestock grazing has opposite effects on the two grasshopper species, and that these effects may be driven by grazing-induced changes in plant nutrient content and the unique nutritional niches of the grasshoppers. These results suggest that insects that belong to the same guild can have opposite nutrient requirements, related to their distinct phenologies, and that this can ultimately affect their response to cattle grazing. Our results show that phenology may link insect physiological needs to local resource availabilities, and should be given more attention in future work on interactions between large herbivores and insects.  相似文献   

5.
The effects of grazing by captive goslings of the Lesser Snow Goose on coastal vegetation at La Pérouse By. Manitoba were investigated. Swards of Carex subspathacea, Festuca rubra and Calamagrostis deschampsioides were grazed once for different periods (0–180 min) and regrowth of vegetation determined, based on measurements of standing crop, net above-ground primary production (NAPP) and forage quality (leaf nitrogen content). The amounts of foliage removed from swards of Carex subspathacea increased with the length of the grazing period, but after 44 days of regrowth there were no significant differences in above-ground biomass between control and grazed plots. While the amount of foliage removed by goslings from swards of Festuca rubra increased with the length of the grazing period (except after 150 min of grazing), the increase in biomass following defoliation was similar among treatments. Goslings removed little biomass from swards of Calamagrostis deschampsioides, even when the opportunity for grazing was 180 min. No significant differences in standing-crop or NAPP between grazed and ungrazed plots were detected by the end of summer. Grazing had no significant effect on amounts of nitrogen in leaf tissue of all species, suggesting that faecal nitrogen was not rapidly incorporated into plant biomass within the growing season. Patterns of regrowth of these species are compared to that of Puccinellia phryganodes. An increase in goose numbers in recent years has led to birds foraging on less preferred species, such as Calamagrostis deschampsiodes and Festuca rubra. Their poor nutritional quality and a lack of a rapid growth response following defoliation may explain, in part, the decline in the weight of wild goslings recorded over the last decade.  相似文献   

6.
  1. We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non‐drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.
  2. Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short‐statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.
  3. One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above‐ground plant biomass while increasing plant foliar percentage nitrogen.
  4. We sampled arthropods and nutrient availability on and nearby (“off”) 10 bison‐grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed‐feeding grasshopper abundances were consistently higher on grazing lawns while grass‐feeder and forb‐feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.
  5. Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.
  相似文献   

7.
Diet selection based on the level of proline in an insect's host plant has been observed for a number of phytophagous insects, but few studies have examined potential differences in feeding preferences between males and females. The level of proline among an insect's host plants, particularly in drought-stressed plants, can be highly variable and often is positively correlated with soluble nitrogen levels. Additionally, proline is known to participate in a number of physiological functions in insects. We tested the effect of proline as a feeding stimulant in reproductively active grasshoppers using the graminivorous Ageneotettix deorum and the generalist, but mostly graminivorous, Phoetaliotes nebrascensis. Feeding preference tests using diets with representative free amino acid and sucrose levels but varying proline levels (zero, normal and 3 x normal) were examined. The feeding preference exhibited by both species was sex-specific, although the sex-specific response was more pronounced in P. nebrascensis than in A. deorum. Females of both species displayed preferences for diets high in proline. Males of neither species exhibited a preference for proline when responses were averaged over all treatment levels. However, within specific treatment combinations, male A. deorum preferred diets with high proline over diets with zero proline. These results suggest that diet selection for specific nutrients may vary between males and females because of differences in their physiological status and, possibly, differences in the nutritional requirements associated with reproduction. These results also suggest that subtle shifts in the concentration of individual nutrients within an insect's host plant may greatly influence insect feeding patterns.  相似文献   

8.
Five groups of E. blakelyi seedlings were differentially fertilized to obtain a range of N concentrations from 0.8–3.0% dry wt in the foliage. Groups of P. atomaria larvae were reared from eclosion to the prepupal stage on these seedlings. The effects on larval growth and development caused by foliar concentrations of N, moisture content, and tannins and leaf toughness were measured. Pupal dry weight and development time of P. atomaria did not differ between those reared on foliage with N levels of 1.7–3.0% but there was a significant decrease in pupal weight and increase in development time for individuals fed foliage with N below this level. Larvae fed foliage with an average of 0.8% N died before reaching instar III. Total dry matter consumption increased with a decrease in N concentration. Larval nitrogen utilization efficiency increased as foliar N level decreased until N reached a level somewhere between 1.7%–1.2% below which it decreased. There appeared to be an N concentration threshold above which P. atomaria larvae received adequate N by regulating consumption and nitrogen utilization efficiency but below which they could no longer accumulate enough N by compensation to maintain an optimum growth rate and development time. Effects of food quality variables on relative growth and consumption rates are presented and discussed.  相似文献   

9.
Summary We tested whether grasshoppers in experimental field environments, i.e. cages (40×40 cm) placed on existing old field vegetation, (1) were limited in density by plant abundance and/or nitrogen content, (2) exhibited interspecific competition, and (3) altered the relative abundance of different plant species. We examined interactions among a pair of early season grasshopper species (May–June; Arphia conspersa and Pardalophora apiculata) and a late season pair (July–August; Melanoplus femur-rubrum and Melanoplus bivittatus). Each grasshopper species was placed in cages by itself and with another grasshopper species. Grasshoppers generally survived at higher density in fertilized cages and they reduced plant abundance relative to empty cages, suggesting that grasshoppers may be food limited at these densities. In unfertilized plots, early season grasshoppers preferred grasses (Schizachyrium scoparium and Poa pratensis) and favored the growth of forbs (especially Solidago spp.). However, late in summer, Melanoplus spp. preferred Solidago spp. and favored the growth of grasses.The pattern of grasshopper survivorship and plant reduction within these experimental environments provide preliminary support for some of the predictions of resource competition theory. Grasshoppers exhibited interspecific competition only if they significantly reduced plant biomass. If two species competed, a grasshopper species was eliminated only if the superior competitor, when living by itself, could reduce plant biomass to a significantly lower level than the inferior competitor. Competitors persisted only if they did not differ in their ability to reduce plant biomass or reduced the abundance of different plant species.  相似文献   

10.
1. Adaptive phenotypic plasticity has been a major subject in evolutionary ecology, but how a species' behaviour may respond to certain environmental change is still not clear. In grasslands worldwide, large herbivores are increasingly used as a tool for grazing management, and occur to interact with grasshoppers that dominate grassland insect communities. Previous studies have been well-documented about grazing effects on diversity and abundance of grasshoppers. Yet, how grazing may alter grasshopper behaviour, and potential effects on their abundance remains elusive. 2. We conducted a field experiment by manipulating grazing using sheep, cattle, and their mix to examine the behavioural responses and abundance of the grasshoppers (Euchorthippus unicolor) to grazing in a Leymus chinensis-dominated grassland. 3. Results showed that the grasshoppers spent less time on feeding and resting on grasses, but more time on switching and resting on forbs under cattle grazing and mixed grazing with cattle and sheep. In contrast, the grasshoppers spent more time on feeding but less time on switching and resting on forbs under sheep grazing. The behavioural changes were also potentially linked to grasshopper abundance in the context of grazing management. 4. The responses of grasshopper behaviour and abundance to grazing may be largely triggered by altered vegetation and microclimates. Such behavioural flexibility of grasshoppers must be considered when large herbivores are recognised as a management tool for influencing grasshopper abundance, and grazer species should be paid more attention both individually and jointly for better grassland conservation.  相似文献   

11.
Summary The digestion and metabolism ofEucalyptus radiata foliage was studied in a small (1–1.5 kg) arboreal marsupial, the greater glider (Petauroides volans). Mean dry matter intake was 44 g·kg–0.75·d–1 and mean cell wall digestibility was 34%; these values fall within the range of other marsupials fedEucalyptus foliage. Digestible energy content ofE. radiata was high compared to other eucalypts because of the high content and digestibility of essential oils. However, excretion of essential oils and their metabolites in the urine meant that greater gliders retained only 55% of their digestible energy intakes (0.61 MJ · kg–0.75· d–1) as metabolizable energy (ME). Low ME intakes were not offset by low standard metabolic rates (2.39 W · kg–0.75), but the efficiency with which ME substituted for tissue energy was high (94%), so that greater gliders were able to maintain energy balance and body mass onE. radiata foliage.Abbreviations ME metabolizable energy - DE digestible energy - RQ respiratory quotient - FHP fasting heat production  相似文献   

12.
Summary Digestion and energy metabolism in an arboreal marsupial, the koalaPhascolarctos cinereus, fed mature foliage from a common food tree, the grey gumEucalyptus punctata, were investigated. Six feeding (balance) experiments, at various times of year, and one slaughter experiment were performed and average daily oxygen consumption was measured.The average apparent digestibilities of dietary constituents were: dry matter 54%; total cell-contents 69%; available carbohydrate 92%; crude lipid 43%; total nitrogen 45%; total phenolics 91%; total cell walls 25%; hemicellulose 24%; acid-detergent fibre 25%; cellulose 31%; lignin 19%.Average digestible and metabolizable energy intakes were 0.50 and 0.43 MJ kg–0.75 d–1 respectively of which only 0.28 MJ kg–0.75 d–1 was expended in oxidative metabolism. The digestible energy intake required for maintenance was estimated to be 0.33 MJ kg–0.75 d–1, which is lower than that of eutherian and of other marsupial herbivores. The principal sources of metabolizable energy were non-structural carbohydrate and lipid.It is postulated that the ability of koalas to utilizeEucalyptus foliage as a sole source of nutrients is facilitated by their low requirement for energy and their ability to maximize intake of non cell-wall constituents.E. punctata foliage has a high digestible energy content compared with the foliage of many other trees and this may be a factor in its selection by koalas.Abbreviations DMI dry matter intake - DMD dry matter digestibility - DE digestible energy - ME metabolizable energy  相似文献   

13.
Summary The hypothesis that graminivorous grasshoppers select C3 grasses over C4 grasses was tested with experiments in the field. It was found that the generalist, graminivorous grasshopper Ageneotettix deorum typically chooses C3 as opposed to C4 grasses when both types are equally available. This preference is attributed to the differences in leaf anatomies of C3 and C4 plants since crude protein, water, lignin, fiber, and silicon content or the size of the individual leaves tested do not explain the observed feeding pattern. However, examination of the actual food plant selection of actual field inhabiting grasshoppers indicates that food plant prefernce may only be a minor component of food selection in natural settings.  相似文献   

14.
We grew seedlings of two co-occurring high elevation tree species in controlled light and nitrogen (N) environments to examine the effect on foliar N and P concentrations and the resulting correlation with photosynthesis and growth. Foliar N concentrations in both heart-leaf paper birch (Betula cordifolia) and balsam fir (Abies balsamea) seedlings were greater in low light treatments than in high light treatments. P concentrations, however, were lower in birch and fir foliage grown in low light than in high light. N-availability had no effect on foliar N in birch but tended to increase N concentration in fir needles at all but 100% ambient light. N-availability had no effect on P concentration in fir seedlings, but high N decreased foliar P in birch. There was a positive relationship between foliar N-concentration (mg g–1) and mass-based maximum photosynthetic rate (Asat) in birch seedlings and a corresponding growth response to increased N-availability (suggesting N-limitation). Fir photosynthesis exhibited a positive correlation up to 22 mg g–1 – N and a negative correlation above that point, suggesting that high N concentrations may be detrimental to photosynthesis in the fir seedlings. There was no significant effect of N-treatment on growth.  相似文献   

15.
Summary The spatial pattern of foliage removal from a tussock grass can influence regrowth through effects on daily carbon gain (CERd). This field study examined the extent to which tussock photosynthetic responses to different defoliation patterns were associated with changes in whole-canopy attributes (e.g., foliage age structure, canopy light microclimate). During the spring growing season, 60% of the green foliage area was removed from individual Agropyron desertorum tussocks with scissors in different spatial patterns. These patterns represented extremes of defoliation patterns that might be inflicted by natural herbivores. Tussock photosynthesis (per unit foliage area) at high light (2000 mol photons m–2 s–1 between 400 and 700 nm; P2000) increased following clipping with all defoliation patterns. The increases in P2000 were greater when leaves were removed from low in the tussock (older leaves) than if leaves high in the canopy (younger leaves) were removed. These relative changes of P2000 among clipping patterns paralleled the responses of CERd and regrowth from an earlier study. Furthermore, the changes in P2000 corresponded with increases in the proportion of foliage within the tussocks that was directly illuminated at midday. The greater photosynthesis of tussocks after lower-leaf removal was directly related to a higher proportion of younger foliage and a smaller fraction of foliage shaded within the tussock. In a dense canopy, such as these grass tussocks, the influence of defoliation on whole-canopy attributes may be of primary importance to whole-plant photosynthetic responses.  相似文献   

16.
Canopy dieback of Eucalyptus blakelyi trees is often associated with defoliation by insects: the foliage of trees with dieback is nutritionally superior for insects and is more heavily damaged by them. I investigated whether differences in the nutritional quality of foliage were genetically determined, or caused by environmental stress. In a series of glasshouse experiments, with seedlings and grafted plants derived from dieback and healthy populations of trees. I tested the influence of deprivation of nutrients, drought, waterlogging, saline waterlogging and addition of excess phosphate, on the nutritional quality of foliage. Differences in the foliar properties of plants from different genetic sources were not consistent with the differences between the source populations. Most of the environmental stresses applied caused a reduction in foliar quality (decreased water and nitrogen contents, and increased specific leaf weights). I hypothesize that the enhanced nutritional quality of the foliage of dieback trees is more likely to be a consequence of benign growing conditions (e.g. improved soil fertility) than of environmental stress. Field data for soil properties and the effect of drought on mature trees are consistent with this view.  相似文献   

17.
Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland (Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.  相似文献   

18.
Laboratory experiments were conducted to measure the feeding rates, preferences, survival rates, maturation times, and weight gain of four common species of grasshoppers (Orthoptera: Acrididae) on four lines of safflower (Carthamus tinctorius). When safflower lines were presented individually, all were readily consumed although consumption differed significantly according to grasshopper species, age and sex, and to safflower line. Consumption was greatest on a safflower line devoid of spines. However, grasshoppers also fed readily on spiny lines, and results of experiments in which all safflower lines were presented together indicated preferences that did not necessarily correspond to the results of the single-line feeding trials. Camnula pellucida, a graminivorous species, did feed on safflower, but restricted feeding almost exclusively to stem cambium, whereas Melanoplus bivittatus, M. packardii and M. sanguinipes fed mainly on the heads, flowers and leaves. Highly significant differences in grasshopper maturation time and weight gain were apparent among grasshopper species, and among safflower lines. Seedtec-5, the line which was least digestible, least consumed and least preferred nevertheless yielded rapid development and the greatest body weights of grasshoppers. All species of Melanoplus developed more quickly and gained more weight on safflower than on wheat. One species, M. packardii, was more able to utilise safflower than its congeners, and may gain competitive advantage if safflower becomes widely grown.  相似文献   

19.
Summary The digestion and metabolism ofEucalyptus melliodora foliage was studied in captive brushtail possums (Trichosurus vulpecula). The foliage was low in nitrogen and silica but high in lignified fibre and phenolics compared with diets consumed by most other herbivores. The high lignin content was suggested as the main cause of the low digestibility ofE. melliodora cell walls (24%); microscopic observations of plant fragments in the caecum and faeces revealed few bacteria attached to lignified tissues. The conversion of digestible energy (0.34 MJ·kg–0.75·d–1) to metabolizable energy (0.26 MJ·kg–0.75·d–1) was low compared to most other herbivores, probably because of excretion of metabolites of leaf essential oils and phenolics in the urine. When the inhibitory effect of leaf tannins on fibre digestion was blocked by supplementing the animals with polyethylene glycol (PEG), intake of dry matter, metabolizable energy and digestible fibre increased. These effects were attributed to the reversal by PEG of tanninmicrobial enzyme complexes. It was concluded that the gut-filling effect of a bulk of indigestible fibre is a major reason why the brushtail possum does not feed exclusively onEucalyptus foliage in the wild.Abbreviations ADF acid-detergent fibre - AL acid-lignin - DE digestible energy - DM dry matter - ME metabolizable energy - NDF neutral-detergent fibre - PEG polyethylene glycol  相似文献   

20.
Rural dieback of Eucalyptus blakelyi trees growing on pastoral properties near Canberra is associated with chronic defoliation by insects. In order to test the effect of defoliation on subsequent herbivory, I artificially defoliated three healthy trees by clipping their terminal branchlets. The foliage that regrew on the clipped trees was nutritionally superior to the foliage it replaced, and was much more heavily damaged by grazing insects. There was a transient increase in the tannin content of the regrowth foliage, but this was apparently ineffective in defending it from subsequent herbivory. Compared with the foliage on nearby E. blakelyi trees that also produced major flushes of leaf growth during the same period, the regrowth on the clipped trees had enhanced dietary qualities and suffered more insect damage. Leaf age contributed to many of the differences in dietary quality, but when adjustments were made for the effects of leaf age the same trends remained. Five of the nearby trees were suffering from the chronic insect grazing associated with rural dieback, and the other five appeared healthy. The dietary quality of regrowth foliage on the clipped trees was qualitatively more similar to that of foliage on the dieback trees. Thus the chronic herbivory associated with rural dieback may be partly self-perpetuating, given this positive feedback between defoliation and dietary quality, and an apparent absence of other effective controls on insect populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号