首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC.  相似文献   

3.
Enterotoxigenic Escherichia coli (ETEC) is an important cause of human and porcine morbidity and mortality. The current study was conducted to identify intestinal immunity that is altered in a mouse model of ETEC infection. Innate immune responses and inflammation were analyzed. The activation of signal transduction pathways, including toll like receptor 4 (TLR-4)-nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK), was analyzed using immunoblotting and PCR array analyses. We found that ETEC infection promoted the expression of pro-inflammatory cytokines through the activation of the NF-κB and MAPK pathways. Meanwhile, ETEC infection affected sIgA transportation and Paneth cell function. These data improve our understanding of how ETEC causes disease in animals.  相似文献   

4.
5.
Rhythmic strain stimulates Caco-2 proliferation. We asked whether mitogen-activated protein kinase (MAPK) activation mediates strain mitogenicity and characterized upstream signals regulating MAPK. Caco-2 cells were subjected to strain on collagen I-precoated membranes or antibodies to integrin subunits. Twenty-four hours of cyclic strain increased cell numbers compared with static conditions. MAPK-extracellular signal-regulated kinase (ERK) kinase inhibition (20 microM PD-98059) blocked strain mitogenicity. p38 Inhibition (10 microM SB-202190) did not. Strain rapidly and time-dependently activated focal adhesion kinase (FAK), paxillin, ERK1 and 2, and p38 on collagen. c-Jun NH(2)-terminal kinase (JNK)1 and 2 exhibited delayed activation. Similar activation occurred when Caco-2 cells were subjected to strain on a substrate of functional antibody to the alpha2-, alpha3-, alpha6-, or beta1-integrin subunits but not on a substrate of functional antibody to the alpha5-subunit. FAK inhibition by FAK397 transfection blocked ERK2 and JNK1 activation by in vitro kinase assays, but pharmacological protein kinase C inhibition did not block ERK1 or 2 activation by strain. Strain-induced ERK signals mediate strain's mitogenic effects and may require integrins and FAK activation.  相似文献   

6.
Thymoquinone (TQ), a component of black seed essential oil, is known to induce apoptotic cell death and oxidative stress, however, the direct involvement of oxidants in TQ-induced cell death has not been established yet. Here, we show that TQ inhibited the proliferation of a panel of human colon cancer cells (Caco-2, HCT-116, LoVo, DLD-1 and HT-29), without exhibiting cytotoxicity to normal human intestinal FHs74Int cells. Further investigation in DLD-1 revealed that apoptotic cell death is the mechanism for TQ-induced growth inhibition as confirmed by flow cytometry, M30 cytodeath and caspase-3/7 activation. Apoptosis was induced via the generation of reactive oxygen species (ROS) as evidenced by the abrogation of TQ apoptotic effect in cells preincubated with the strong antioxidant N-acetyl cysteine (NAC). TQ increased the phosphorylation states of the mitogen-activated protein kinases (MAPK) JNK and ERK, but not of p38. Their activation was completely abolished in the presence of NAC. Using PD98059 and SP600125, specific ERK and JNK inhibitors, the two kinases were found to possess pro-survival activities in TQ-induced cell death. These data present evidence linking the pro-oxidant effects of TQ with its apoptotic effects in colon cancer and prove a protective role of MAPK.  相似文献   

7.
Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.  相似文献   

8.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

9.
10.
Sphingosine-1-phosphate (S-1-P) has been identified as an extracellular mediator and an intracellular second messenger that may modulate cell motility, adhesion, proliferation, and differentiation and cancer cell invasion. Widely distributed, S-1-P is most abundant in the intestine. Although S-1-P is likely to modulate various intracellular pathways, activation of the mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase 1 (ERK1), ERK2, and p38 is among the best-characterized S-1-P effects. Because the MAPKs regulate proliferation, we hypothesized that S-1-P might stimulate intestinal epithelial cell proliferation by MAPK activation. Human Caco-2 intestinal epithelial cells were cultured on a fibronectin matrix because fibronectin is an important constituent of the gut mucosal basement membrane. We assessed ERK1, ERK2, and p38 activation by Western blotting with antibodies specific for their active forms and proliferation by Coulter counting at 24 h. Specific MAP kinase kinase (MEK) and p38 inhibitors PD98059 (20 microM) and SB202190 and SB203580 (10 and 20 microM) were used to probe the role of ERK and p38 in S-1-P-mediated proliferation. Three or more similar studies were pooled for the analysis. S-1-P stimulated Caco-2 proliferation and dose-responsively activated ERK1, ERK2, and p38. Proliferation peaked at 5 microM, yielding a cell number 166.3 +/- 2.7% of the vehicle control (n = 6, P < 0.05). S-1-P also maximally stimulated ERK1, ERK2, and p38 at 5 microM, to 164.4 +/- 19.9%, 232.2 +/- 38.5%, and 169.2 +/- 20.5% of the control, respectively. Although MEK inhibition prevented S-1-P activation of ERK1 and ERK2 and slightly but significantly inhibited basal Caco-2 proliferation, MEK inhibition did not block the S-1-P mitogenic effect. However, pretreatment with 10 microM SB202190 or SB203580 (putative p38 inhibitors) attenuated the stimulation of proliferation by S-1-P. Twenty micromolars of SB202190 or SB203580 completely blocked the mitogenic effect of S-1-P. Ten to twenty micromolars of SB202190 and SB203580 also dose-dependently ablated the effects of 5 microM S-1-P on heat shock protein 27 accumulation, a downstream consequence of p38 MAPK activation. Consistent with the reports in some other cell types, S-1-P appears to activate ERK1, ERK2, and p38 and to stimulate proliferation. However, in contrast to the mediation of the S-1-P effects in some other cell types, S-1-P appears to stimulate human intestinal epithelial proliferation by activating p38. ERK activation by S-1-P is not required for its mitogenic effect.  相似文献   

11.
E. tenella infection is associated with a severe intestinal disease leading to high economic losses in poultry industry. Mitogen activated protein kinases (MAPKs) are implicated in early response to infection and are divided in three pathways: p38, extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK). Our objective was to determine the importance of these kinases on cell invasion by E. tenella. We evaluated the effect of specific inhibitors (ERK: PD98059, JNKII: SP600125, p38 MAPK: SB203580) on the invasion of epithelial cells. Incubation of SP600125 and SB203580 with epithelial cells and parasites significantly inhibited cell invasion with the highest degree of inhibition (90%) for SB203580. Silencing of the host p38α MAPK expression by siRNA led to only 20% decrease in cell invasion. In addition, when mammalian epithelial cells were pre-treated with SB203580, and washed prior infection, a 30% decrease in cell invasion was observed. This decrease was overcome when a p38 MAPK activator, anisomycin was added during infection. This suggests an active but limited role of the host p38 MAPK in this process. We next determined whether SB203580 has a direct effect on the parasite. Indeed, parasite motility and secretion of micronemal proteins (EtMIC1, 2, 3 and 5) that are involved in cell invasion were both decreased in the presence of the inhibitor. After chasing the inhibitor, parasite motility and secretion of micronemal proteins were restored and subsequently cell invasion. SB203580 inhibits cell invasion by acting partly on the host cell and mainly on the parasite.  相似文献   

12.
13.
14.
Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMβ2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.  相似文献   

15.
Context: The “free fatty acid receptors” (FFARs) GPR40, GPR41, and GPR43 regulate various physiological homeostases, and are all linked to activation of extracellular signal-regulated kinases (ERK)1/2.

Objective: Investigation of coupling of FFARs to two other mitogen-activated protein kinases (MAPKs) sometimes regulated by G protein-coupled receptors (GPCRs), c-Jun N-terminal kinase (JNK) and p38MAPK, and characterization of signaling proteins involved in the regulation of FFAR-mediated ERK1/2 activation.

Methods: FFARs were recombinantly expressed, cells challenged with the respective agonist, and MAPK activation quantitatively determined using an AlphaScreen SureFire assay. Inhibitors for signaling proteins were utilized to characterize ERK1/2 pathways.

Results: Propionate-stimulated GPR41 strongly coupled to ERK1/2 activation, while the coupling of linoleic acid-activated GPR40 and acetate-activated GPR43 was weaker. JNK and p38MAPK were weakly activated by FFARs. All three receptors activated ERK1/2 fully or partially via Gi/o and Rac. PI3K was relevant for GPR40- and GPR41-mediated ERK1/2 activation, and Src was essential for GPR40- and GPR43-induced activation. Raf-1 was not involved in the GPR43-triggered activation.

Conclusion: The results demonstrate a novel role of Rac in GPCR-mediated ERK1/2 signaling, and that GPCRs belonging to the same family can regulate ERK1/2 activation by different receptor-specific mechanisms.  相似文献   

16.
Listeria monocytogenes, a Gram-positive bacterium, can cause meningitis after invading the human central nervous system. The blood-cerebrospinal fluid barrier (BCSFB), located at the epithelium of the choroid plexus, is a possible entry site for L. monocytogenes into the brain, and in vitro L. monocytogenes invades human choroid plexus epithelial papilloma (HIBCPP) cells. Although host cell signal transduction subsequent to infection by L. monocytogenes has been investigated, the role of mitogen-activated protein kinases (MAPK) is not clarified yet. We show that infection with L. monocytogenes causes activation of the MAPKs Erk1/2 and p38 preferentially when bacteria are added to the physiologically more relevant basolateral side of HIBCPP cells. Deletion of the listerial virulence factors Internalin (InlA) and InlB reduces MAPK activation. Whereas inhibition of either Erk1/2 or p38 signaling significantly attenuates infection of HIBCPP cells with L. monocytogenes, simultaneous inhibition of both MAPK pathways shows an additive effect, and Erk1/2 and p38 are involved in regulation of cytokine and chemokine expression following infection. Blocking of endocytosis with the synthetic dynamin inhibitor dynasore strongly abrogates infection of HIBCPP cells with L. monocytogenes. Concurrent inhibition of MAPK signaling further reduces infection, suggesting MAPKs mediate infection with L. monocytogenes during inhibition of dynamin-mediated endocytosis.  相似文献   

17.
Zhao LJ  Zhao P  Chen QL  Ren H  Pan W  Qi ZT 《Cell proliferation》2007,40(4):508-521
OBJECTIVE: Hepatitis C virus (HCV) is a major pathogenic factor of liver diseases. During HCV infection, interaction of the envelope protein E2 of the virion, with target cells, is a crucial process for viral penetration into the cell and its propagation. We speculate that such interaction may trigger early signalling events required for HCV infection. MATERIALS AND METHODS: Human liver cell line L-02 was treated with HCV E2. The kinase phosphorylation levels of mitogen-activated protein kinase (MAPK) signalling pathways in the treated cells were analyzed by Western blotting. The proliferation of the E2-treated cells was evaluated by MTT assay. RESULTS: HCV E2 was shown to be an efficient activator for MAPK pathways. Levels of phosphorylation of upstream kinases Raf-1 and MEK1/2 were seen to be elevated following E2 treatment and similarly, phosphorylation levels of downstream kinases MAPK/ERK and p38 MAPK also increased in response to E2 treatment, and specificity of kinase activation by E2 was confirmed. E2-induced MAPK/ERK activation was inhibited by the MEK1/2 inhibitor U0126 in a concentration-dependent manner. Blockage of relevant cellular receptors reduced activation of Raf-1, MEK1/2, MAPK/ERK and p38 MAPK by E2, indicating efflux of the E2 signal from extracellular to the intracellular spaces. Thus, kinase cascades of MAPK pathways were continuously affected by E2 presence. Moreover, enhancement of cell proliferation by E2 appeared to be associated with the dynamic phosphorylation of MAPK/ERK and p38 MAPK. CONCLUSION: These results suggest that MAPK signalling pathways triggered by E2 may be a potential target for prevention of HCV infection.  相似文献   

18.
Accumulating evidence indicates that astroglial syncytium plays key role in normal and pathological brain functions. Astrocytes both in vitro and in situ respond to extracellular adenine-based nucleotides via the activation of P2 receptors. Massive release of ATP from neurons and glial cells occurs as a result of pathological conditions of the brain leading to neuroinflammation and involving P2X7 receptors. In this study, we investigated whether P2X7 stimulation on cultured cortical astrocytes promoted a differential activation of mitogen-activated protein kinases (MAPKs), and whether the second messenger arachidonic acid (AA), which is also a key modulator of neuroinflammation, affected the P2X7-mediated MAPK phosphorylation. The results show that the synthetic P2X7 receptor agonist 2′,3′-O-(4-benzoyl)benzoyl-ATP (BzATP), induced a concentration-dependent phosphorylation of MAPK ERK1/2, JNK and p38. Stimulation of ERK1/2, JNK and p38 phosphorylation was also obtained by pathophysiological levels of extracellularly applied AA. Interestingly, a robust potentiation of ERK1/2 phosphorylation was elicited by co-application of BzATP and AA, whereas no differences were observed in JNK or p38 phosphosignals. The kinases activation showed a differential dependence on the presence of extracellular Ca2+. The potentiation of BzATP-mediated ERK1/2 phosphorylation was also observed in human embryonic kidney cells (HEK293) stably transfected with rat P2X7, but not in HEK cells expressing truncated P2X7 receptor lacking the full cytoplasmic carboxy-terminal or in those carrying the structurally related rat P2X2. AA and BzATP synergism in ERK1/2 activation was abolished by cyclo-oxygenase and lipoxygenase pathway inhibitors.The result that ERK1/2-mediated transduction pathway is synergistically modulated by ATP and AA signalling depicts possible novel pharmacological targets for interfering with pathological activation of astroglial cells.  相似文献   

19.
Previously, we demonstrated that protein kinase D (PKD) plays a protective role during H2O2-induced intestinal cell death. Here, we sought to determine whether this effect is mediated by nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Treatment with H2O2 activated NF-κB in RIE-1 cells; H2O2 also induced the translocation of NF-κB p65 as well as phosphorylation of IκB-α. PKD1 siRNA inhibited H2O2-induced activation, translocation of NF-κB, and phosphorylation of IκB-α. We also found that overexpression of wild type PKD1 attenuated H2O2-induced phosphorylation of p38 MAPK and its upstream activator, MAPK kinase (MKK) 3/6, whereas the phosphorylation was increased by PKD1 siRNA or kinase-dead PKD1. Phosphorylation of neither extracellular signal-regulated kinases (ERK) 1/2 nor c-Jun N-terminal kinases (JNK) was altered by PKD1 plasmids or siRNA. Our findings suggest that PKD protects intestinal cells through up-regulation of NF-κB and down-regulation of p38 MAPK.  相似文献   

20.
MAPK phosphatase 3 (MKP3) is highly specific for ERK1/2 inactivation via dephosphorylation of both phosphotyrosine and phosphothreonine critical for enzymatic activation. Here, we show that MKP3 is able to effectively dephosphorylate the phosphotyrosine, but not phosphothreonine, in the activation loop of p38α in vitro and in intact cells. The catalytic constant of the MKP3 reaction for p38α is comparable with that for ERK2. Remarkably, MKP3, ERK2, and phosphorylated p38α can form a stable ternary complex in solution, and the phosphatase activity of MKP3 toward p38α substrate is allosterically regulated by ERK2-MKP3 interaction. This suggests that MKP3 not only controls the activities of ERK2 and p38α but also mediates cross-talk between these two MAPK pathways. The crystal structure of bisphosphorylated p38α has been determined at 2.1 Å resolution. Comparisons between the phosphorylated MAPK structures reveal the molecular basis of MKP3 substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号