首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Sperm storage within the oviductal isthmus prior to ovulation typically involves binding to oviductal epithelial cells, which are thought to modulate sperm functions including internal calcium concentration, membrane fluidity, and motility. Around the time of ovulation the spermatozoa are gradually released so that they eventually encounter the oocytes within the oviductal ampulla. Previous studies have shown that the oviductal epithelial cells selectively sequester high quality spermatozoa, but the role of oviductal fluid as a selective modulator of sperm function has been investigated to a lesser extent. Here we address the hypothesis that oviductal fluid is also likely to modulate sperm function. Using samples of porcine oviductal fluid collected in the follicular phase of the estrus cycle, we show that short exposure (20 min to 50 μg/mL of oviductal fluid proteins) to either of two separate proteins fractions (> or < 100 kDa) promotes boar sperm viability and acrosomal integrity, decreases sperm plasma membrane fluidity (measured using merocyanine S540), and increases zona binding and polyspermy during in vitro fertilization. Exposure to the lower molecular fraction significantly inhibited, but did not abolish, the bicarbonate-induced stimulation of motility. The results show that subpopulations of spermatozoa respond differentially to oviductal fluid, and suggest that exposure to oviductal fluid in vivo could exert a further level of functional sperm selection.  相似文献   

2.
Prediabetes has been associated with alterations in male reproductive tract, especially in testis and epididymis. Moreover, in vitro studies described a promising action of tea (Camellia sinensis L.) against metabolic dysfunctions. Herein, we hypothesized that white tea (WTEA) ingestion by prediabetic animals could ameliorate the metabolic alterations induced by the disease in testicular and epididymal tissues, preserving sperm quality. WTEA infusion was prepared and its phytochemical profile was evaluated by 1H-NMR. A streptozotocin-induced prediabetic rat model was developed and three experimental groups were defined: control, prediabetic (PreDM) and prediabetic drinking WTEA (PreDM+WTEA). Metabolic profiles of testis and epididymis were evaluated by determining the metabolites content (1H-NMR), protein levels (western blot) and enzymatic activities of key metabolic intervenient. The quality of spermatozoa from cauda epididymis was also assessed. Prediabetes increased glucose transporter 3 protein levels and decreased lactate dehydrogenase activity in testis, resulting in a lower lactate content. WTEA ingestion led to a metabolic adaptation to restore testicular lactate content. Concerning epididymis, prediabetes decreased the protein levels of several metabolic intervenient, resulting in decreased lactate and alanine content. WTEA consumption restored most of the evidenced alterations, however, not lactate content. WTEA also improved epididymal sperm motility and restored sperm viability. Prediabetes strongly affected testicular and epididymal metabolic status and most of these alterations were restored by WTEA consumption, resulting in the improvement of sperm quality. Our results suggest that WTEA consumption can be a cost-effective strategy to improve prediabetes-induced reproductive dysfunction.  相似文献   

3.
Sperm metabolism of a tropical fish species, the African catfish, Clarias gariepinus, was studied by measurements of sperm enzyme activity and metabolite levels. We also analysed the effect of metabolites, co-enzymes and enzymatic blockers on sperm motility behaviour and viability. Similar to other teleostean species, African catfish spermatozoa have the capacity for glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, lipid catabolism, beta-oxidation and osmoregulation. In immotile spermatozoa, lipid catabolism, beta-oxidation, the tricarboxylic acid cycle and oxidative phosphorylation were important primary energy-delivering pathways; sperm oxygen consumption was 0.39-0.85 microg O(2)/min/ ml of testicular semen. During motility, glycolysis, lipid catabolism and beta-oxidation of fatty acids occurred simultaneously, which is atypical for teleosts, and the spermatozoal respiration rate increased drastically by 15-25-fold. Also in contrast to other teleostean sperm cells, ATP levels remained stable during motility and immotile storage. The sperm cell status was unstable in the African catfish. Although the spermatozoa have osmoregulation ability, and even though balanced physiological saline solutions were used for sperm motility activation and sperm incubation, the motility and viability of spermatozoa quickly decreased at 28 degrees C, the spawning temperature of the African catfish. Cyclic AMP and inhibition of phosphodiesterase activity could not prolong sperm motility and viability. In contrast, at 6-10 degrees C motility was prolonged from approximately 30 s to >5 min, probably due to decreased metabolic rates.  相似文献   

4.
有机碳化合物对湛江等鞭金藻生长的影响   总被引:1,自引:0,他引:1  
为了探讨有机碳化合物对湛江等鞭金藻的营养效应,实验设置了在f/2培养基中添加葡萄糖、乙酸钠、半乳糖、甘油、乙醇、柠檬酸钠和甘氨酸等7种有机碳化合物的处理,测定了湛江等鞭金藻(Isochrysis zhanjiangensis)的生长情况。结果表明,参试的7种有机碳化合物中,甘氨酸对湛江等鞭金藻细胞生长的促进作用最明显,而乙醇对藻细胞生长的促进效果不明显,其他5种均有不同程度的促进作用。7种有机碳对湛江等鞭金藻胞内蛋白质含量和总脂的积累量具有一定差异性影响。0.5~10g·L-1的葡萄糖、乙酸钠均可提高胞内蛋白质和总脂的含量。半乳糖对总脂积累量的影响不明显。  相似文献   

5.
In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4. These results provide a metabolic explanation for the low ethanol productivity on xylose compared to glucose.  相似文献   

6.
Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways.  相似文献   

7.
It has been reported that phosphorus deprivation can induce β-carotene and triacylglycerol accumulation in Dunaliella salina cells. In this study, we aimed to elucidate the metabolic responses of D. salina to phosphorus deprivation, using gas chromatography-mass spectrometry as analytical tool. A total of 79 metabolites were identified in cells cultured in either phosphorus-deprived or replete media, including 18 amino acids, 28 other acids, 16 sugars, 12 alcohols, and 5 amino compounds. Hierarchical clustering was used to sort these metabolites into three groups with different change trends. Most amino acids and sugars, including the abiotic stress-related metabolites lysine, proline, trehalose, talose, and tagatose, increased, whereas N,N-dimethylglycine, L-serine, D-erythro-pentose, and D-ribose remained constant upon phosphorus deprivation. Multivariate statistical partial least squares and principal component analyses indicated that metabolite profiles were significantly changed upon phosphorus deprivation, and 18 biomarkers which can be used to distinguish the two culture conditions were identified. Stress-related polyamines such as cadaverine, antioxidants such as L-ascorbic acid, and L-methionine, as well as the osmolytes proline, mannitol, and arabitol, also increased. Furthermore, phosphorus deprivation resulted in increases of both saturated and unsaturated fatty acids in D. salina cells. These results suggest that phosphorus deprivation triggers comprehensive metabolic responses in D. salina which may be useful for future bioprocesses.  相似文献   

8.
Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels.  相似文献   

9.
Incorporation of [3H]galactose and [3H]glucose into the parenchyma, tegument, testis, and muscle of Fasciola hepatica slices was studied by lightand electron-microscope autoradiography. “Accumulation” labeling periods of up to 60 min were used.Both monosaccharides were found to be readily incorporated into glycogen in the parenchymal cells and muscle and [3H]glucose entered the glycogen stores of spermatozoa.No evidence was found for the involvement of any particular cell organelle in glycogenesis, but the demonstration of high synthetic activity in parenchymal evaginations to the base of the surface syncytial tegument supports physiological evidence that glucose enters the fluke mainly across the tegument.Ethylene glycol-dehydrated preparations showed that [3H]galactose was incorporated into glycoprotein by Type I tegumental cells, and perhaps also by sperm morulae. The carbohydrate component seems to be added to the tegumental secretions in the vesicular-lamellar region of the Golgi complex.Following the longest periods of incubation, labeling was observed in the tubules connecting the tegumental cells and syncytium, but not in the surface syncytium itself.  相似文献   

10.
Factors affecting the survival of frozen-thawed mouse spermatozoa   总被引:2,自引:0,他引:2  
Mouse epididymal spermatozoa were frozen in solutions containing various compounds with different molecular weights, and the factors affecting the postthawing survival were examined. Monosaccharides (glucose, galactose) had almost no protective effect regardless of the concentration and the temperature of exposure. On the other hand, disaccharides (sucrose, trehalose) and trisaccharides (raffinose, melezitose) resulted in higher survival rates, especially at a concentration of around 0.35 mol/kg H(2)O (0.381-0.412 Osm/kg). Macromolecules, such as PVP10, Ficoll 70, bovine serum albumin, and skim milk had almost no effect, but compounds with a molecular weight of about 800, such as metrizamide and Nycodenz, had some protective effect. When a raffinose solution was supplemented with 10% metrizamide, resulting in an osmolality of approximately 0.400 Osm/kg, a high survival rate was obtained. Solutions at about 0.400 Osm/kg containing trehalose alone, trehalose + metrizamide, raffinose alone, and raffinose + metrizamide, were all effective for sperm freezing; frozen-thawed sperm could fertilize oocytes, and the resultant embryos could develop to live young after transfer. For freezing mouse spermatozoa, aqueous solutions at approximately 0.400 Osm/kg containing a disaccharide or a trisaccharide seem to be effective.  相似文献   

11.
We have previously reported a lack of glucose uptake in domestic cat and cheetah spermatozoa, despite observing that these cells produce lactate at rates that correlate positively with sperm function. To elucidate the role of glycolysis in felid sperm energy production, we conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm motility and viability are maintained in both species in the absence of glycolytic metabolism and are fueled by endogenous substrates. Washed ejaculates were incubated in chemically defined medium in the presence/absence of glucose and pyruvate. A second set of ejaculates was exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or glyceraldehyde-3-phosphate dehydrogenase (alpha-chlorohydrin). Sperm function (motility and acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was assayed for intracellular glycogen. In both the cat and cheetah, sperm function was maintained without exogenous substrates and following lactate dehydrogenase inhibition. Lactate production occurred in the absence of exogenous hexoses, but only if pyruvate was present. Intracellular glycogen was not detected in spermatozoa from either species. Unexpectedly, glycolytic inhibition by alpha-chlorohydrin resulted in an immediate decline in sperm motility, particularly in the domestic cat. Collectively, our findings reveal an essential role of the glycolytic pathway in felid spermatozoa that is unrelated to hexose metabolism or lactate formation. Instead, glycolytic enzyme activity could be required for the metabolism of endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source in felid spermatozoa.  相似文献   

12.
For the purpose of assessing mutagenic effects (clastogenicity) of metabolites derived from chemical mutagens/carcinogens on human sperm chromosomes, spermatozoa were exposed in vitro to cyclophosphamide (CP), benzo(a)pyrene (BP) or N-nitrosodimethylamine (NDMA) for 2h in the presence or absence of rat liver S9, a metabolic activator of these chemicals. After in vitro fertilization between human spermatozoa and zona-free hamster oocytes, chromosome complements of sperm origin were analyzed cytogenetically.In the absence of S9, none of three chemicals (20 microg/ml CP, 200 microg/ml BP and 20mg/ml NDMA) caused a significant increase in spermatozoa with structural chromosome aberrations (8.6, 10.0 and 7.5%), as compared with their matched controls (10.9, 11.0 and 8.5%). In the presence of S9, however, a significant increase in chromosomally abnormal spermatozoa was observed in CP (37.1%, P < 0.001) and BP (31.0%, P < 0.001), indicating that enzymatic activation of CP and BP induced chromosomal abnormalities in human sperm. In contrast, NDMA did not induce chromosome aberrations in human spermatozoa by S9 treatment, although positive results have been observed in somatic cells. The present results on in vitro clastogenicity of CP, BP and NDMA are consistent with the results in previous in vivo studies with murine spermatozoa. Our S9/human sperm chromosome assay seems to be useful for estimation of hereditary risk of chemicals in human. Because most chemicals need metabolic activation to bind to DNA.  相似文献   

13.
Carbohydrate-binding proteins are thought to be involved in a myriad of sperm functions including sperm-oviductal and sperm-zona interactions. Recent studies in our laboratory have characterized galactose-binding proteins on equine spermatozoa as possible candidate molecules for sperm adhesion to oviduct epithelial cells. In the current study, equine sperm membrane proteins were subjected to galactose-affinity chromatography, and bound proteins were eluted with excess galactose in a calcium-free buffer. The eluted fraction recovered after galactose-affinity chromatography was used for generation of a polyclonal antibody which was immobilized on an affinity column to recover a purified protein from equine sperm extracts. Several protein bands of approximately 70, 25, and 20-18 kDa were detected with a major band at 25k Da on immunoblots which was subjected to N-terminal amino acid sequencing. These galactose binding proteins (GBP) were specific to sperm and testis and were absent in all the somatic tissues tested. Based upon immunocytochemistry, GBP were localized over the sperm head. In noncapacitated sperm, fluorescent labeling was observed over the rostral sperm head as well as the postacrosomal area; whereas in capacitated sperm, the labeling was localized primarily in the equatorial segment. Immunohistochemistry of equine testis demonstrated abundant staining in the adluminal region of the seminiferous tubules corresponding to round spermatids. In summary, this study demonstrates the presence of testis- and sperm-specific galactose binding proteins in the horse. The function of these proteins remains to be determined.  相似文献   

14.
Rat spermatozoa main lipid classes and their fatty acids were studied to assess their possible changes in capacitation and the acrosomal reaction (AR), induced in vitro. Capacitation-associated protein tyrosine phosphorylation, and the efflux of 30% of the total cholesterol from gametes to the medium, took place concomitantly with the release of a similar percentage, i.e., a larger amount, of the total phospholipid, mostly after hydrolysis of the major choline glycerophospholipids (CGP). Main medium lipid metabolites after capacitation were lyso-CGP and polyenoic fatty acids typical of CGP (22:4n-9, 22:5n-6), as free fatty acids (FFA). The AR, induced by a calcium ionophore, resulted in further phospholipid loss, but the produced metabolites remained in the gametes. CGP decrease in AR accounted for some additional FFA and lyso-CGP, but mostly for (22:5n-6-rich) diglycerides. Hydrolysis of sphingomyelins (SM) to ceramides also occurred, mostly affecting species with very long chain polyenoic fatty acids. Quantitatively, CGP and SM were the lipid classes decreasing the most after capacitation and AR, respectively. The massive cholesterol and phospholipid loss from the gametes during capacitation is thus associated with protein phosphorylation, a function that has been located to the sperm tail. The lipid metabolites produced during AR, by accumulating in the gamete heads, could be implicated in sperm–oocyte interactions.  相似文献   

15.
Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments.  相似文献   

16.
It is known that the amino acid arginine stimulates sperm motility and glycolytic activity. We have earlier studied its efficacy as a stimulator of glycolysis in goat spermatozoa under anaerobic conditions. Here, we have assessed the influence of arginine in reversing the impairment caused by glycolytic inhibitors, iodoacetamide and iodoacetic acid. Glycolysis has been monitored by measuring the consumption of 13C labeled glucose and the amount of 13C labeled lactate produced under different experimental conditions, using 13C NMR. It is observed that both L- and D-arginine are able to prevent and reverse the inhibitory action of glycolytic inhibitors. The reversal effect of arginine gives rise to about eight times higher metabolic activity as compared to the inhibited cells while structurally related amino acids such as nitro-arginine, homo-arginine, lysine and ornithine are ineffective. The energetics of spermatozoa as measured by 31P NMR show a reduction in ATP level in cells incubated with iodoacetamide. Treatment of these cells with both L- and D-arginine restores the ATP level. The results may have significance in the treatment of male infertility.  相似文献   

17.
In this study, nuclear magnetic resonance techniques coupled with multivariate data analysis were used for the metabolic profiling of mycelia and fruiting bodies of the entomopathogenic fungi, Cordyceps bassiana according to developmental stages. A direct extraction method using two deuterated solvents of D2O and CDCl3 was used to investigate the relative levels of identified metabolites in each extraction condition in the mycelium and fruiting body formation stages. There was a clear separation among mycelia and fruiting bodies with various developmental stages in partial least-squares discriminant analysis (PLS-DA) derived score plots. During the transition from mycelia to fruiting bodies, the major metabolic change observed was the conversion of glucose to mannitol, and beauvericin to phenylalanine and 1-hydroxyisovaleric acid. In the developmental stages of fruiting bodies studied, there was a clear separation between stage 3 and the other stages in PLS-DA derived score plots. Nineteen compounds including 13 amino acids, 2 nucleosides, 3 organic acids, and glucose showed the highest levels in stage 3 fruiting bodies. The flavonoid content in the fruiting bodies showed similar levels during stages 1, 2, and 3, whereas the level at stage 4 was significantly decreased compared to the other stages. Results suggest that the fruiting body of C. bassiana is richer in natural resources at stage 3 compared to the other fruiting body stages due to its high abundance of compounds including total flavonoids. The metabolome information acquired in this study can be useful criteria for the quality control of commercial use of C. bassiana.  相似文献   

18.
Although use of cryopreserved stallion spermatozoa is currently accepted by many breed registries, utilization of this technique remains limited due to poor fertility for some stallions. One reason for these results is osmotic stress that spermatozoa experiences when the cryoprotectant (glycerol) is added to the cells prior to freezing and removal from the cells after thawing. In an effort to minimize osmotic damage, alternative cryoprotectants, having lower molecular weights and greater membrane permeability than glycerol, were evaluated to determine their effectiveness for cryopreserving stallion spermatozoa. In the first experiment, equal molar concentrations of several amides were compared to determine if they could preserve the motility of sperm as well as glycerol. At 0.55 M concentration, addition of glycerol to a skim milk-egg yolk (SMEY) diluent resulted in higher percentages of motile sperm (61%) than methyl formamide (40%) or dimethyl formamide (38%, P<0.05), while formamide, acetamide, and methyl acetamide resulted in recovery of less than 20% motile cells (P<0.05). When methyl formamide or dimethyl formamide were increased to 0.6 or 0.9 M they resulted in percentages of motile cells (48-54%) similar to that achieved with glycerol (52%). Similarly, 0.9 M ethylene glycol also resulted in similar percentages of motile cells (43%). Replacing the glucose and fructose in the SMEY diluent with either raffinose or trehalose did not result in higher percentages of motile sperm (65 and 66%, respectively) than the control SMEY (63%). Similarly, addition of methyl cellulose also did not increase the percentages of motile spermatozoa in the samples, after cryopreservation (P>0.05). In conclusion, both methyl formamide and dimethyl formamide protected stallion spermatozoa from cryodamage as effectively as glycerol. Since these compounds permeate the plasma membrane more effectively than glycerol, they should cause less osmotic damage to stallion spermatozoa than glycerol. Therefore, these compounds may prove very effective in the cryopreservation of stallion spermatozoa, and may be particularly useful for spermatozoa from stallions that produce spermatozoa that have poor post-thaw characteristics when glycerol is used as the cryoprotectant.  相似文献   

19.
Glucose metabolism is essential for successful gamete fusion in the mouse. Although the metabolic activity of the oocyte does not appear to play a significant role in the fusion step, the metabolic role of the spermatozoon is not known. The aim of this study was therefore to characterize the role of glucose metabolism in mouse spermatozoa. Initially, the high-affinity glucose transporter GLUT3 was identified in mouse sperm. In characterizing the glucose metabolism of mouse sperm, we have shown 1) that mouse epididymal spermatozoa have a functional pentose phosphate pathway (PPP), implying that they produce NADPH, which is required for reducing reactions, and ribose 5-phosphate, which is required for nucleic acid synthesis; and 2) that sperm are able to fuse with the oocyte when NADPH is substituted for glucose, suggesting that sperm need to produce NADPH via the PPP in order to be able to achieve fertilization. The existence of an NADPH-regulated event that influences the ability of the sperm to fuse with the oocyte is envisaged.  相似文献   

20.
The aim of this study was to evaluate the cryoprotective effect of different freezing extenders against cryopreservation injuries on Iberian boar sperm. The sperm-rich fraction was collected and pooled from six sexually mature Iberian boars, and was frozen in different extenders containing glucose, lactose or fructose as sugar source and including Orvus ES Paste only in the freezing extender-2 (Glucose; Lactose and Fructose) or in both freezing extenders (Glucose2; Lactose2 and Fructose2). During the cryopreservation process, the supernatant was removed after the centrifugation step, then was extended with freezing extender-1 for the equilibration period and with freezing extender-2 immediately before freezing. Post-thaw sperm characteristics, such as plasma membrane integrity (SYBR-14/PI), mitochondrial function (Rhodamine 123) and acrosome integrity (NAR), were monitored. Overall sperm motility and the individual kinematic parameters of motile spermatozoa (assessed by the computer-aided sperm analysis system Sperm Class Analyzer [SCA]) were recorded in the different experimental treatments. Measurements were taken at 30 and 150 min post-thaw. The state of the acrosome after thawing did not show significant differences between the freezing extenders studied. Freezing–thawing caused a significant decrease (P < 0.001) in plasma membrane integrity and in mitochondrial activity in the spermatozoa frozen with Orvus ES Paste in both freezing extenders. Furthermore, spermatozoa frozen with Orvus ES Paste in both freezing extenders exhibited lower (P < 0.05) motility and kinematic parameters than those frozen in the absence of Orvus ES Paste in the first freezing extender. The spermatozoa frozen with the Lactose extender and with Orvus ES Paste only in the second freezing extender showed a better evolution of the motility and kinematic characteristics (P < 0.05) over time. The deterioration in post-thaw sperm motility and kinematic parameters were concurrent with reduced sperm characteristics. It can be suggested that in the Iberian pig, the beneficial effects of Orvus ES Paste during the freezing process of spermatozoa is time dependent. The analysis of different sperm characteristics such as motility, plasma membrane integrity and mitochondrial function, determined that the extenders studied in the present experiment affected the quality of frozen-thawed semen in Iberian boar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号