首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two achlorophyllous microalgal strains were isolated from the soil and white moldy colony collected inside the stone chamber of the Takamatsuzuka Tumulus in Japan. Phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) and Dl/D2 large subunit ribosomal RNA (LSU rRNA) gene sequences, and concatenated gene sequences of the SSU and D1/D2 LSU rRNA genes indicated that our two isolates were the members of the non-photosynthetic, yeast-like microalgal Chlorellaceous genus Prototheca (Chlorellales, Trebouxiophyceae, Chlorophyta) but well distinguished from known species. Based on phenotypic and genotypic characteristics, isolates T6713-13-10T and T61213-7-11 are proposed to represent a novel species in Prototheca, P. tumulicola, with the type strain JCM 31123T (isolate T6713-13-10T).  相似文献   

2.
A novel bacterial strain, designated ARSA-111T, was isolated from a freshwater reservoir in Cheonan, Korea. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the isolate belonged to the genus Flavobacterium of phylum Bacteroidetes. The 16S rRNA gene sequence of strain ARSA-111T showed a high degree of sequence similarity to those of Flavobacteium cheonanense KACC 14972T (97.3%), F. aquatile JCM 20475T (97.1%), and other type strains of the genus Flavobacterium (< 97.0%). The phylogenetic tree and network analysis (i.e. median-joining) based on 16S rRNA gene sequences showed that strain ARSA-111T is most closely related to F. aquatile JCM 20475T. DNA-DNA hybridization experiment revealed 70% of genomic relatedness among strain ARSA-111T, F. aquatile JCM 20475T and F. cheonanense KACC 14972T. The isolate had iso-C15:1, iso-C15:0, and iso-C15:0 3-OH as predominant cellular fatty acids and MK-6 as a predominant menaquinone. The genomic DNA G+C content of the isolate was 35.6 mol%. On the basis of these data, strain ARSA-111T is considered to be a novel species of the genus Flavobacterium, for which the name Flavobacterium aquaticum sp. nov. is proposed. The type strain is strain ARSA-111T (=KACC 14973T =KCTC 23185T = JCM 17070T).  相似文献   

3.
A novel, red-pigmented, pleomorphic and short rod-shaped haloarchaeon, designated B8T, was isolated from a salt-fermented seafood. Strain B8T was found to be able to grow at 20–45 °C, in the presence of 15–30 % (w/v) NaCl and at pH 7.0–9.0. The optimum requirements were found to be a temperature range of 35–40 °C, pH 8.0 and the presence of 25 % NaCl. The cells of strain B8T were observed to be Gram-staining negative and lysed in distilled water. Anaerobic growth did not occur in the presence of nitrate, l-arginine, dimethyl sulfoxide or trimethylamine N-oxide. The catalase and oxidase activities were found to be positive and nitrate was reduced in aerobic conditions. Tween 20, 40 and 80 were found to be hydrolyzed, whereas casein, gelatin and starch were not hydrolyzed. Indole or H2S was not formed and urease activity was not detected. A phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain B8T is most closely related to members of the genus Halorubrum in the family Halobacteriaceae. Strain B8T was found to have three 16S rRNA genes, rrnA, rrnB and rrnC; similarities between the 16S rRNA gene sequences are 99.0–99.8 %. Strain B8T shared 99.0 % 16S rRNA gene sequence similarity with Halorubrum (Hrr.) lipolyticum JCM 13559T and Hrr. saccharovorum DSM 1137T, 98.8 % with Hrr. kocurii JCM 14978T, 98.3 % with Hrr. lacusprofundi DSM 5036T, 98.0 % with Hrr. arcis JCM 13916T, 97.7 % with Hrr. aidingense JCM 13560T and 97.0 % with Hrr. aquaticum JCM 14031T, as well as 93.7–96.5 % with other type strains in the genus Halorubrum. The RNA polymerase subunit B′ gene sequence similarity of strain B8T with Hrr. kocurii JCM 14978T is 97.2 % and lower with other members of the genus Halorubrum. DNA–DNA hybridization experiments showed that strain B8T shared equal or lower than 50 % relatedness with reference species in the genus Halorubrum. The genomic DNA G+C content of strain B8T was determined to be 64.6 mol%. The major isoprenoid quinone of strain B8T was identified as menaquinone-8 and the major polar lipids as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and an unidentified phospholipid. Based on this polyphasic taxonomic study, strain B8T is considered to represent a new species in the genus Halorubrum, for which the name Hrr. halophilum sp. nov. is proposed. The type strain is B8T (=JCM 18963T = CECT 8278T).  相似文献   

4.
A total of 26 Gram-negative, motile, gently curved, and rod-shaped isolates were recovered, during a study to determine the faeco-prevalence of Helicobacter spp. in urban wild birds. Pairwise comparisons of the 16S rRNA gene sequences indicated that these isolates belonged to the genus Helicobacter and phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolates were separated into two divergent groups. The first group consisted of 20 urease-positive isolates sharing the highest 16S rRNA gene sequence identity levels of 98.5–98.6% to H. mustelae ATCC 43772T, while the second group contained six urease-negative isolates with the sequence identity level of 98.5% to the type strain of H. pametensis ATCC 51478T. Five isolates were chosen and subjected to comparative whole-genome analysis. The phylogenetic analysis of the 16S rRNA, gyrA and atpA gene sequences showed that Helicobacter isolates formed two separate phylogenetic clades, differentiating the isolates from the other Helicobacter species. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses between strains faydin-H8T, faydin-H23T and their close neighbors H. anseris MIT 04-9362T and H. pametensis ATCC 51478T, respectively, confirmed that both strains represent novel species in the genus Helicobacter. The DNA G+C contents of the strains faydin-H8T and faydin-H23T are 32.0% and 37.6%, respectively. The results obtained for the characterization of the wild bird isolates indicate that they represent two novel species, for which the names Helicobacter anatolicus sp. nov., and Helicobacter kayseriensis sp. nov., are proposed, with faydin-H8T(=LMG 32237T = DSM 112312T) and faydin-H23T(=LMG 32236T = CECT 30508T) as respective type strains.  相似文献   

5.
6.
As part of a study carried out for detecting Arcobacter spp. in shellfish, three mussel isolates that were Gram-negative slightly curved rods, non-spore forming, showed a new 16S rDNA-RFLP pattern with a specific identification method for the species of this genus. Sequences of the 16S rRNA gene and those of the housekeeping genes rpoB, gyrB and hsp60 provided evidence that these mussel strains belonged to an unknown genetic lineage within the genus Arcobacter. The similarity between the 16S rRNA gene sequence of the representative strain (F79-6T) and type strains of the other Arcobacter species ranged between 94.1% with A. halophilus and 99.1% with the recently proposed species A. defluvii (CECT 7697T). DDH results between strain F79-6T and the type strain of the latter species were below 70% (53 ± 3.0%). Phenotypic characteristics together with MALDITOF mass spectra differentiated the new mussel strains from all other Arcobacter species. All the results indicate that these strains represent a new species, for which the name Arcobacter ellisii sp. nov. with the type strain F79-6T (=CECT 7837T = LMG 26155T) is proposed.  相似文献   

7.
Two deltaproteobacterial sulfate reducers, designated strain I.8.1T and I.9.1T, were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20°C at pH 7.0–8.0 and at 2.5–3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C3–4 fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-ω9c (18%) for strain I.8.1T and iso-17:0-ω9c (14%) for strain I.9.1T. The G+C contents of their genomic DNA were 45–46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141T and Desulfovibrio marinisediminis JCM 14577T represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98–99%. The level of DNA-DNA hybridization between strains I.8.1T and I.9.1T was 30–38%. The two strains shared 10–26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1T and I.9.1T represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1T = DSM 21390T = JCM 15970T) and D. oceani subsp. galateae (type strain, I.9.1T = DSM 21391T = JCM 15971T).  相似文献   

8.
An aerobic, Gram-negative, coccoid to short rod-shaped and non-flagellated marine bacterial strain S354T was isolated from seawater of Micronesia. The strain was capable to degrade agar-forming slight depression into agar plate. Growth occurred at a temperature range of 12–44 °C, a pH range of 5–9, and a salinity range of 1–7 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences suggested that S354T belongs to the family Flammeovirgaceae. The novel strain was most closely related to Limibacter armeniacum YM 11-185T with similarity of 92.5 %. The DNA G+C content was 43.8 mol%. The major fatty acids (>10 %) were iso-C15:0 and C16:1 ω5c. The predominant isoprenoid quinone was determined to be MK-7. Polar lipid profile of S354T consisted of phosphatidylethanolamine, unknown polar lipid, and unknown glycolipids. Based on the phenotypic, phylogenetic, biochemical, and physiological tests conducted in this study, S354T is proposed to represent a type strain of a novel genus and species. The 16S rRNA gene sequence of S354T is registered in GenBank under the accession number JQ639084. The type of strain Algivirga pacifica gen. nov., sp. nov. is S354T (=KCCM 90107T=JCM 18326T).  相似文献   

9.
Nineteen bacteria isolates recovered from shellfish samples (mussels and oysters) showed a new and specific 16S rDNA-RFLP pattern with an Arcobacter identification method designed to recognize all species described up to 2008. These results suggested that they could belong to a new species. ERIC-PCR revealed that the 19 isolates belonged to 3 different strains. The sequence of the 16S rRNA gene of a representative strain (F98-3T) showed 97.6% similarity with the closest species Arcobacter marinus followed by Arcobacter halophilus (95.6%) and Arcobacter mytili (94.7%). The phylogenetic analysis with the16S rRNA, rpoB, gyrB and hsp60 genes placed the shellfish strains within the same cluster as the three species mentioned (also isolated from saline habitats) but they formed an independent phylogenetic line. The DDH results between strain F98-3T and A. marinus (54.8% ± 1.05), confirmed that it represents a new species. Several biochemical tests differentiated the shellfish isolates from all other Arcobacter species. Although the new species was different from A. mytili, they shared not only the same habitat (mussels) but also the characteristic of being so far the only Arcobacter species that are simultaneously negative for urea and indoxyl acetate hydrolysis. All results supported the classification of the shellfish strains as a new species, for which the name Arcobacter molluscorum sp. nov. with the type strain F98-3T is proposed (=CECT 7696T = LMG 25693T).  相似文献   

10.
A novel cellulolytic bacterium, strain S23T, was isolated from the rhizosphere of the pine trees in Daejeon, Republic of Korea. This isolate was Gram-positive, strictly aerobic, rod-shaped, catalase-negative, oxidase-positive, motile by means of peritrichous flagella, and tested positive for alkaline phosphatase, esterase lipase, leucine arylamidase, α-galactosidase, and β-galactosidase activities. The DNA G+C content was 49.5 mol%. The main cellular fatty acids were anteiso-C15:0 (51.9%), iso-C16:0 (14.7%), and iso-C15:0 (13.2%). The major isoprenoid quinone was menaquinone 7 (MK-7). Diagnostic diamino acid in the cell-wall pepti-doglycan was meso-diaminopimelic acid. Comparative 16S rRNA gene sequence analysis showed that this strain clustered with Paenibacillus species. The 16S rRNA gene sequence similarity values between S23T and other Paenibacillus species were between 89.9% and 95.9%, and S23T was most closely related to Paenibacillus tarimensis SA-7-6T. On the basis of phylogenetic and phenotypic properties of strain S23T, the isolate is considered as a novel species belonging to the genus Paenibacillus. Therefore, the name, Paenibacillus pinihumi sp. nov., is proposed for the rhizosphere isolate; the type strain is S23T (=KCTC 13695T =KACC 14199T =JCM 16419T)  相似文献   

11.
Three acidophilic actinobacteria, isolates LSCA2, FGG8 and HSCA14T, recovered from spruce litter were examined using a polyphasic approach. Chemotaxonomic and morphological properties of the isolates were found to be consistent with their classification in the genus Streptacidiphilus. The isolates were shown to have identical 16S rRNA gene sequences and were most closely related to Streptacidiphilus neutrinimicus DSM 41755T (99.9 % similarity). However, DNA:DNA relatedness between isolate HSCA14T and the type strain of S. neutrinimicus was found to be low at 44.0 (±14.1) %. A combination of phenotypic features, including degradative and nutritional characteristics were shown to distinguish the isolates from their nearest phylogenetic neighbours. Data from this study show that the isolates form a novel species in the genus for which the name S. hamsterleyensis sp. nov. is proposed. The type strain is HSCA 14T (=DSM 45900T = KACC 17456T = NCIMB 14865T).  相似文献   

12.
An endospore-forming bacterium, designated YT-3T, was isolated from a paddy soil in Yingtan, Jiangxi, China. Cells of strain YT-3T were Gram-positive, rod-shaped, facultative anaerobic, catalase, and oxidase positive. The optimum growth temperature and pH were 30°C (ranged from 15 to 50°C) and 6.5–7.0 (ranged from 3 to 11), respectively. Analysis of the 16S rRNA gene sequence showed that strain YT-3T was affiliated to the genus Bacillus and displayed the highest similarity to that of Bacillus drentensis JCM 21707T (98.3%), followed by B. ginsengisoli JCM 17335T (97.8%) and B. fumarioli JCM 21708T (97.0%). The similarity of rpoB gene sequence between strain YT-3T and B. drentensis JCM 21707T, B. ginsengisoli JCM 17335T and B. fumarioli JCM 21708T was 80.4%, 81.5%, and 82.1%, respectively. The genomic DNA G + C content was 44.9 mol%. The predominant respiratory quinone was Menaquinone-7, and meso-diaminopimelic acid was present in the peptidoglycan layer of cell wall. The major fatty acids were C15:0 anteiso (36.2%), C14:0 iso (19.6%), C15:0 iso (17.4%), and C16:0 iso (9.8%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and ammoniac phospholipids. The DNA-DNA hybridization values between isolate YT-3T and B. drentensis (JCM 21707T), B. ginsengisoli (JCM 17335T), and B. fumarioli (JCM 21708T) were 36.3%, 30.3%, and 25.3%, respectively. On the basis of physiological, genetic and biochemical data, strain YT-3T represented a novel species of the genus Bacillus, for which the name Bacillus ferrooxidans sp. nov was proposed. The type strain is YT-3T (= KCTC 33875T = CCTCC AB 2017049T).  相似文献   

13.
Two Gram-stain positive, aerobic actinomycete strains, designated NEAU-JGR1T and NEAU-JGC41, were isolated from soil collected from Fairy Lake Botanical Garden in Shenzhen, Guangdong Province, south of China. The 16S rRNA gene sequences analysis showed that the two strains exhibited 99.5% 16S rRNA gene sequence similarity with each other and were closely related to Promicromonospora thailandica JCM 17130T (99.4, 99.3%) and Promicromonospora citrea DSM 43110T (99.2, 99.2%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the two strains clustered together and formed a cluster with P. thailandica JCM 17130T and P. citrea DSM 43110T. Both strains were observed to contain MK-9(H4) and MK-9(H2) as predominant menaquinones. Their whole cell sugar profiles were found to main contained rhamnose, ribose, glucose and galactose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycophosphatidylinositol, phosphatidylinositol mannoside, an unidentified glycolipid and an unidentified phospholipid. The predominant cellular fatty acids for the two strains were identified as anteiso-C15:0, iso-C15:0 and anteiso-C17:0. The DNA–DNA hybridization value between strains NEAU-JGR1T and NEAU-JGC41 was 85.1?±?0.3%, and the values between the two strains and their close phylogenetic relatives were well below 70%, supporting the conclusion that they represent a distinct genomic species. An array of phenotypic characteristics also differentiated the isolates from closely related species. On the basis of the genetic and phenotypic properties, strains NEAU-JGR1T and NEAU-JGC41 can be classified as representatives of a novel species of the genus Promicromonospora, for which the name Promicromonospora viridis sp. nov., is proposed. The type strain is NEAU-JGR1T (=?DSM 105536T?=?CGMCC 4.7473T).  相似文献   

14.
A novel, red-pigmented and coccoid haloarchaeon, designated strain CBA1101T, was isolated from a marine sediment. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CBA1101T is most closely related to the genus Halococcus in the family Halobacteriaceae. Strain CBA1101T had a highest 16S rRNA gene sequence similarity of 98.4 % with Halococcus dombrowskii DSM 14522T, followed by 93.7–98.3 % with sequences of other type strains in the genus Halococcus. The RNA polymerase subunit B′ gene sequence similarity of strain CBA1101T with that of Halococcus qingdaonensis JCM 13587T is 89.5 % and lower with those of other members of the genus Halococcus. Strain CBA1101T was observed to grow at 25–40 °C, pH 6.0–9.0 and in the presence of 15–30 % (w/v) NaCl, with optimal growth at 35–40 °C, pH 7.0 and with 20 % NaCl. The cells of strain CBA1101T are Gram-negative and did not lyse in distilled water. The major polar lipids were identified as phosphatidylglyerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diether, unidentified phospholipids and unidentified glycolipids. The genomic DNA G+C content was determined 66.0 mol%. The DNA–DNA hybridization experiment showed that there was less than 40 % relatedness between strain CBA1101T and the reference species in the genus Halococcus. Based on this polyphasic taxonomic analysis, strain CBA1101T is considered to represent a new species in the genus Halococcus, for which the name Halococcus sediminicola sp. nov. is proposed. The type strain is CBA1101T (=JCM 18965T = CECT 8275T).  相似文献   

15.
Strain B31T is a Gram-staining-negative, motile, and extremely halophilic archaeon that was isolated from salt-fermented seafood. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were determined. Phylogenetic analysis of its 16S rRNA gene sequence and composition of its major polar lipids placed this archaeon in the genus Halorubrum of the family Halobacteriaceae. Strain B31T showed 97.3, 97.2, and 96.9 % 16S rRNA similarity to the type strains of Halorubrum alkaliphilum, Hrr. tibetense, and Hrr. vacuolatum, respectively. Its major polar lipids were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulfated diglycosyl diether (S-DGD). Genomic DNA from strain B31T has a 61.7 mol% G+C content. Analysis of 16S rRNA gene sequences, as well as physiological and biochemical tests, identified genotypic and phenotypic differences between strain B31T and other Halorubrum species. The type strain of the novel species is B31T (=JCM 15757T =DSM 19504T).  相似文献   

16.
Lactobacilli are dominant in zha-chili. This study provides a taxonomic characterization of five bacterial strains isolated from zha-chili in China. The cells were Gram-positive, facultative anaerobic, non-spore-forming, flagella-free, catalase-negative, heterofermentative, pentose-fermenting, and gamma-aminobutyric acid (GABA)-producing rods. For HBUAS51241T, HBUAS51329, and HBUAS51416, C16:0, C18:1 ω9c and C19:0 iso were the predominant cellular fatty acids; diphosphatidylglycerol (DPG), phosphatidylglycerol (DP), glycolipids (GL), and glycolipids (AL) were the major phospholipids. While for HBUAS51383T and HBUAS58055, C16:0, C18:1 ω9c, C19:0 cyclo ω8c were the predominant cellular fatty acids; DPG, DP, GL, and AL were the major phospholipids. Strains HBUAS51241T, HBUAS51329, and HBUAS51416 showed 98.1–99.1% 16S rRNA gene sequence similarity, 80.2–81.4% ANI, 87.7–90.0% AAI, and 23.8–32.8% digital DDH to their closest related type strains Levilactobacillus hammesii DSM 16381T, Levilactobacillus parabrevis ATCC 53295T, and Levilactobacillus fuyuanensis 244-4T. Strains HBUAS51383T and HBUAS58055 showed 98.7–99.5% 16S rRNA gene sequence similarity, 75.4–81.4% ANI, 75.5–89.1% AAI, and 19.7–24.0% digital DDH to their closest related type strains Secundilactobacillus silagincola IWT5T, Secundilactobacillus silagei JCM 19001T, Secundilactobacillus pentosiphilus IWT25T, Secundilactobacillus mixtipabuli IWT30T, Secundilactobacillus odoratitofui DSM 19909T, and Secundilactobacillus similis DSM 23365T. The central carbon metabolism pathways for the five strains were summarizeded. Based on the phenotypic, chemotaxonomic, and genomic data, we propose two novel species Levilactobacillus tujiorum sp. nov. whose type strain is HBUAS51241T (=GDMCC 1.3022T = JCM 35241T), and Secundilactobacillus angelensis sp. nov. whose type strain is HBUAS51383T (=GDMCC 1.3021T = JCM 35209T).  相似文献   

17.
Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT 5085T, V. hangzhouensis JCM 15146T V. maritimus LMG 25439T, and V. variabilis LMG 25438T). In silico DDH data also supported the genomic relationship. The strains C7T also had less than 95% average amino acid identity (AAI) and average nucleotide identity (ANI) towards V. maritimus C210, V. variabilis C206, and V. mediterranei AK1T, V. brasiliensis LMG 20546T, V. orientalis ATCC 33934T, and V. sinaloensis DSM 21326. The name Vibrio astriarenae sp. nov. is proposed with C7 as the type strains. Both V. agarivorans CECT 5058T and V. astriarenae C7T are members of the newest clade of Vibrionaceae named Agarivorans.  相似文献   

18.
During a study of the diversity and phylogeny of rhizobia isolated from root nodules of Oxytropis ochrocephala grown in the northwest of China, four strains were classified in the genus Rhizobium on the basis of their 16S rRNA gene sequences. These strains have identical 16S rRNA gene sequences, which showed a mean similarity of 94.4 % with the most closely related species, Rhizobium oryzae. Analysis of recA and glnA sequences showed that these strains have less than 88.1 and 88.7 % similarity with the defined species of Rhizobium, respectively. The genetic diversity revealed by ERIC-PCR fingerprinting indicated that the isolates correspond to different strains. Strain CCNWQLS01T contains Q-10 as the predominant ubiquinone. The major fatty acids were identified as feature 8 (C18: 1ω7c and/or C18: 1ω6c; 67.2 %). Therefore, a novel species Rhizobium qilianshanense sp. nov. is proposed, and CCNWQLS01T (= ACCC 05747T = JCM 18337T) is designated as the type strain.  相似文献   

19.
20.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号