首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
 The effect of arbuscular mycorrhizal fungi (AMF) on micropropagated banana plantlets was evaluated during the acclimatization period. Plants were inoculated with Acaulospora scrobiculata, Glomus clarum or Glomus etunicatum. After cultivation in a greenhouse for 3 months, height, leaf area, fresh weight and dry matter of root and shoots, level of AMF colonization, nutrient level, photosynthesis and transpiration rate, water potential and stomatal conductance were measured. The number of AMF spores produced in each treatment was also determined. Plantlets inoculated with AMF had greater height, leaf area and fresh weight of shoots and roots, as well as higher rates of photosynthesis and transpiration than controls. Plants inoculated with Glomus were superior in most of the evaluated parameters. Accepted: 24 May 1999  相似文献   

2.
 A reliable inoculum, free from other microorganisms, to produce arbuscular mycorhizal (AM) plants is of the greatest importance when studying the interaction between AM plants and soil microorganisms. We investigated the colonization of leeks from monoxenic in vitro-produced Glomus intraradices spores. The isolated spores were produced using a two-compartment in vitro growth system previously described. A spore suspension was used as inoculum and was compared to the inoculum potential of endomycorrhizal root segments of pot-grown leek (Allium porrum L.) plants. The leeks were grown in a controlled environment and two types of sterilized growth media were tested: calcined montmorillonite clay and a soil mix. Root colonization progressed faster in the soil mix than in the clay. However, in this medium, after an initial delay, root colonization from in vitro-produced spores was essentially the same as that observed with the root-segment inoculum, reaching 44% and 58% respectively, after 16 weeks. Leek roots colonized by the monoxenically-produced spores harbored only the studied AMF fungi while the roots colonized from the root segments were substantially contaminated by other fungi. Accepted: 25 December 1998  相似文献   

3.
Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.  相似文献   

4.
Phytoremediation is the use of selected plants to decontaminate polluted environments. Arbuscular mycorrhizal fungi (AMF) may potentially be useful for phytoremediation, but it is not known how petroleum hydrocarbons influence AMF spore germination and hyphal growth. To address this question, germination of spores and germ tube growth of Glomus intraradices Schenck and Smith and Glomus aggregatum Schenck and Smith were assessed in soil contaminated with up to 3% (w/v) of F2 diesel oil or HAGO reference oil. Hyphal growth, colonization and progeny spore production were assessed in vitro using transformed root cultures of Daucus carota and G. intraradices spores in a F2 diesel contaminated medium. In addition, extraradical hyphal growth of G. intraradices colonizing Daucus carota in the presence of F2 diesel was studied. Neither F2 diesel nor HAGO reference oil affected spore germination or germ tube growth in soil. However, in the presence of plant roots, germ tube growth of G. intraradices was reduced and delayed in the presence of F2 diesel and root colonization was not detected. Hyphal growth of pre-colonized carrot roots by G. intraradices was reduced and delayed in F2 contaminated medium compared to controls. F2 diesel did not inhibit spore germination of these AMF species but did reduce colonization, germ tube and hyphal growth. These results suggest that AMF inoculum can be established in petroleum-contaminated sites. However, it may prove beneficial to plant pre-colonized plants to increase the probability of sufficient AMF colonization and growth. The likely mechanism(s) of petroleum toxicity in this plant-microbe system was discussed.  相似文献   

5.
The effects of inoculum forms (single-spore, multi-spores, or colonized root pieces) and host plants (Nicotiana tabacum L., Sorghum sudanense(Piper) Stapf, and Trifolium repens L. ) on the development and inoculum potential (IP) of the arbuscular mycorrhizal fungi (AMF): Glomus macrocarpum Tul & Tul, Glomus mosseae (Nicol & Gerd. ) Gerdemann & Trappe, Glomus versiforme (Karsten) Berch, and Sclerocystis sinuosa Gerdemann & Bakhi cultured in pots were investigated. The lag phase of treatment with 50 spores or 0.5 g (fresh weight) of colonized root pieces was 4 weeks, much shorter than that of the treatment with 1 spore (8 weeks); the value of IP(VIP) and percentage of root colonization(PRC) of the former were greater than those of the latter. Only on the early stages of colonization was there difference between the 50 spores and the 0.5 g (fresh weight) of colonized root piece inoculation treatments. The IP per plant inoculated with 0. 5 g (fresh weight) of colonized mot pieces of AMF was greater than that of the other two treatments except G. vers/forme on Nicotiana tabacum, while the PRC of the plants inoculated with 50 spores and 0. 5 g (fresh weight) of colonized root pieces of AMF was higher than that of the 1 spore inoculation after 10 weeks. The VIP of AMF on Trifolium repens was significantly higher than that on the other two hosts. The VIP of G. mosseae, G. versiforme, and S. sinuosa was respectively greater than that of G. macrocarpum. This suggested that different species of AMF produced different VIP of the inoculum. Nicotiaha tabacum was much better than the other host plants which used to be inoculated with single spore, and to produce inocula of AMF.  相似文献   

6.
The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and 32P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg?1 substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg?1) shoot dry weight than non-colonized controls (26.5 mg Pb kg?1) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg?1 root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.  相似文献   

7.
A study was conducted to define culture conditions for in vitro growth arbuscular mycorrhizal fungi (AMF) with liverworts as hosts. Lunularia cruciata (L.) Dumortier ex. Lindberg developed in vitro monoxenic mycothalli with both Glomus proliferum Dalpé & Declerck (MUCL 41827) and Glomus intraradices Schenck & Smith (MUCL 43204). AMF inoculated plants were co-cultured in plastic Petri dishes with semi-solidified medium supplemented with sucrose and grown under filtered light. Mycothalli of L. cruciata produced external hyphae and spores in quantities equivalent to those obtained with Ri T-DNA transformed root systems.  相似文献   

8.
We examined the effect of arbuscular mycorrhizal fungi inoculation at the nursery stage on the growth and nutrient acquisition of wetland rice (t Oryza sativa L.) under field and pot conditions. Seedlings were grown on -ray sterilized paddy soil in two types of nurseries, namely dry nursery and wet nursery, with or without arbuscular mycorrhizal fungi (AMF) inoculation which was a mixture of indigenous AMF (t Glomus spp.) spores collected from the paddy field. Five-to-six week old seedlings were transplanted to the unsterilized soil under field and pot, respectively. Mycorrhizal seedlings had higher shoot biomass under both nursery conditions 5 weeks after sowing. Mycorrhizal colonization and sporulation were 2 to 3 times higher in the dry nursery than the wet nursery at the transplanting stage. Mycorrhizal colonization of plants inoculated in the nursery remained higher than those not inoculated under both field and pot conditions. Sporulation after transplanting to field conditions was about 10 times higher than in the pot. Inoculated plants produced higher biomass at maturity under field conditions, and the grain yield was 14-21% higher than those not inoculated. Conversely, grain yield and shoot biomass were not significantly influenced by AMF colonization under pot conditions. For plants originating from the dry nursery, N, P, Zn and Cu concentrations of field-grown plants at harvest were significantly increased by preinoculation with AMF over those left uninoculated. We conclude that the AMF inoculation at the nursery stage under both dry and wet conditions increased growth, grain yield and nutrient acquisition of wetland rice under field conditions.  相似文献   

9.
Colonization by Glomus intraradices takes place very early within the root system of micropropagated plantlets of strawberry (var. avanta, elsanta), raspberry (var. himboqueen, Zeva I), and hortensia (var. leuchtfeuer). The arbuscular mycorrhizal fungus (AMF) did not colonize roots of the different hosts to the same extent, and considerable differences were observed between the varieties. The results reported here confirm that endomycorrhizal root colonization is affected by the host-fungus combination. The effects ranged from mutualistic (hortensia), through neutral (strawberry var. avanta, raspberry var. Zeva I) to negative (raspberry var. himboqueen and strawberry var. elsanta). Non-mycorrhized (control) plants of strawberry produced more runners than mycorrhized plants under controlled growth conditions (phytotron). Transfer of the potted plants to the field resulted in drastic alterations in overall growth and development within 4 weeks. Mycorrhized plants became healthy, and mycorrhized strawberry plants produced many stout runners. The number of the runners and their biomass were almost the same (var. avanta) and treated plants produced even more runners than the controls (var. elsanta). The authors have demonstrated the need to determine the specific effects of each species of AMF on individual prospective host plants prior to their utilization in the micropagation of plantlets.  相似文献   

10.
The occurrence of arbuscular mycorrhizae fungi (AMF) was examined in natural and reclaimed sand dunes in Iceland. On the coastal sand‐plain of Myrdalssandur no spores of AMF were found on barren sand, and very few were found in 1‐ and 5‐year‐old reclamation sites of Leymus arenarius (lymegrass). A significantly higher number of AMF spores and root colonization were found in a 10‐year‐old reclamation site and in a natural old dune system of L. arenarius. AMF spores showed seasonal variation with higher occurrence in the fall than in the spring. On the volcanic island Surtsey, no AMF spores or root colonization were found on L. arenarius in 6‐ and 10‐year‐old dunes. However, AMF spores and root colonization were found in the 22‐year‐old Leymus dune. On Surtsey, a colonization pattern was found where AMF non‐dependent plants were the first colonizers followed by AMF facultative plants, then by AMF‐dependent plants. Today AMF facultative plants have the highest number of species but AMF non‐dependent plants have the largest population size. Three different AMF inocula were tested on L. arenarius; growth of seedlings was improved significantly by an indigenous AMF inoculum compared with commercial inocula. Inoculation of nursery grown seedlings of L. arenarius followed by transplantation into barren sand seeded with L. arenarius is recommended because this method will ensure establishment of the plant and enhance succession.  相似文献   

11.
This study was undertaken to ascertain if the soft rot inciting Pectobacterium carotovorum/Erwinia carotovora would pass through the micropropagated bananas as a latent pathogen and cause disease during or post acclimatization. In vitro cultures of ‘Grand Naine’ were exposed to the pathogen by providing 100 μl of inoculum (0.001–1.0 at OD600 nm) at the lower leaf axil. These cultures showed a gradual development of soft rot symptoms coupled with obvious bacterial colony growth on banana proliferation medium and consequent plant mortality within a month irrespective of the inoculum level employed. Plants carried forward to acclimatization following inoculation in vitro failed to establish ex vitro. Monitoring the normal field-grown suckers at culture initiation through PCR screening employing soft rot Erwinia primers did not show the amplification of the 119-bp fragment as seen with the pure cultures of pathogen. Further testing of micropropagated banana plants through soil inoculation, in vitro culturing and PCR screening ruled out the possibility of the pathogen surviving in micropropagated stocks in latent form as the organism outgrew and killed the cultures. It emerged that the infection possibly takes place in the nursery. This information will be of particular value for the plant tissue culture industry, plant pathologists and quarantine agencies.  相似文献   

12.
The use of inoculum of arbuscular mycorrhizal fungi (AMF) in nursery represents a promising field in horticulture because of its known benefits in terms of plant growth and bioprotection. The present work was undertaken to determine the effect of mycorrhizal inoculation with Rhizophagus irregularis in a nursery medium on the containment of melon root rot and vine decline (MRRVD) caused by the soil‐borne pathogen Monosporascus cannonballus. The percentage of mycorrhization, biomass and yield following mycorrhizal inoculation were also evaluated. Biocontrol activity was assessed in greenhouse pot experiments upon artificial inoculation of M. cannonballus and in a two‐season field experiment under production conditions in an unheated greenhouse with a history of MRRVD. On the basis of the mycorrhization parameters, the interaction appeared to be established within 30 days after inoculation. The total shoot growth in the mycorrhized plants was significantly higher when compared to the control, while the root growth was unaffected. Upon artificial inoculation of M. cannonballus, mycorrhization provided complete protection against the pathogen. Greenhouse experiments under production conditions during spring cropping season showed that pretransplanting inoculation with R. irregularis significantly decreased the severity of the disease. Also, the average fruit weight of mycorrhized plants was significantly higher than the untreated control. Nevertheless, in summer crop, the bioprotection activity of AMF failed. Present results indicate that the use of AMF in a nursery setting can contribute to the prevention of the onset of this problematic soil‐borne disease within a sustainable and integrated soil‐borne disease management.  相似文献   

13.
Summary Immobilization of Candida rugosa cells on a solid support for extracellular lipase production has been explored. The use of Ca-alginate beads and of mixed matrix of polyurethane foam/Ca-alginate beads enabled us to operate a batch and a continuous four-phase fluidized bed bioreactor. Cells co-entrapped together with polyurethane into Ca-alginate did not show higher lipase production levels than the cells entrapped in Ca-alginate gels. The addition of gum arabic to the medium greatly enhanced lipase production without affecting the hydrodynamic operating conditions significantly. This fact demonstrates that the reactor system is limited in terms of organic substrate dispersion and direct contact with cells. Correspondence to: C. Solà  相似文献   

14.
Host responses to AMF from plots differing in plant diversity   总被引:2,自引:0,他引:2  
Increased plant species richness in a plant community leads to changes in the composition of the associated arbuscular-mycorrhizal fungal (AMF) community. We tested whether AMF from plots with increased plant diversity cause significant differences in the growth of Lespedeza capitata, Schizachyrium scoparium or Liatris aspera. Seedlings of each were transplanted into pasteurized soil inoculated with soil from their own monocultures, or from plots with one, seven, or 15 additional plant species. In addition, inocula from S. scoparium and L. capitata monocultures were tested for reciprocal growth effects. Inocula from plots containing the native tallgrass prairie species Lespedeza capitata showed increasing AMF species richness and spore density with increasing plant diversity; this was not true with plots containing Schizachyrium scopariumor Liatris aspera. All three species responded to AMF inoculation with increased growth and Cu concentrations, and lowered Mn concentrations compared to non-inoculated control plants. Increasing the plant diversity of the inoculum source-plots significantly affected plant weights of L. capitata, but not of the other two host plants. Both S. scoparium and L. capitata showed increases in growth with inoculum from S. scoparium monocultures compared to that from L. capitata monocultures. Spore density of inoculum source plots was associated with subsequent plant growth or nutrient content only in Lespedeza plots, which contained considerably fewer spores, plant cover, and root biomass in plots with lower plant diversity.  相似文献   

15.
The role of arbuscular mycorrhizal fungi (AMF) in the control of migratory endoparasitic nematodes is nowadays largely admitted. Most studies were conducted under greenhouse conditions and a few used in vitro cultures with transgenic root organs. Here, we reported, for the first time, on the interaction between an AMF, Rhizophagus irregularis MUCL 41833 and Radopholus similis in roots of banana plantlets grown under in vitro culture conditions. The banana plantlets were pre-mycorrhized in an extraradical mycelium network arising from a Medicago truncatula donor seedling, before transfer to an autotrophic in vitro cultivation system and subsequent nematode inoculation. Both microorganisms were able to complete their life cycle in the absence as well as in presence of each other. The total R. similis population (i.e., summed over the roots and growth medium) as well as the surface of root necrosis was significantly reduced by 60 and 56 %, respectively, in the AMF-colonized banana plantlets. By contrast, nematodes had no visible impact on root colonization (i.e., percentage of arbuscules, intraradical spores/vesicles, and hyphae) by AMF and on the number of spores and hyphal length produced in the medium. These results clearly demonstrated that pre-mycorrhized banana plants could outcompete R. similis, while root colonization was not affected by the nematodes. They underline the interest of the novel in vitro cultivation system as a promising tool to investigate the biochemical factors and molecular mechanisms involved in the bio-protection conferred by AMF to a major root pathogen of banana.  相似文献   

16.
Inoculum of an indigenous mixture of arbuscular mycorrhizal fungi (AMF) containingGlomus mosseae, Glomus fasciculatum, Glomus etunicatum, Glomus intraradices andScutellospora sp. was applied to four of the most frequently used crop species in Slovenia: green pepper (Capsicum annuum), parsley (Petroselinum crispum), carrot (Daucus carrota) and tomato (Lycopersicon esculentum). A simple, feasible, and effective protocol for application of AMF biotechnology in horticulture was adopted.Mycorrhizal inoculation significantly increased the plant biomass parameters of pepper, and parsley and the root biomass of carrots. Statistically significant correlations between biomass parameters of pepper, parsley, and the root biomass of carrots with mycorrhizal colonization parameters (mycorrhizal frequency (F%), global mycorrhizal intensity (M%) and arbuscular richness (A%) were calculated. A significant increase in chlorophyll content was observed in mycorrhizal parsley and a significant increase in carotenoids was observed in mycorrhizal parsley, carrots, and tomato fruits. A significant increase in titratable acidity of fruits from inoculated tomato plants indicates prolonged fruiting period of mycorrhizal tomatoes. In addition, inoculation with an indigenous AMF mixture significantly increased the mycorrhizal potential of soil and thus the growth of non-inoculated plants in the second season. Thus, the results confirmed the potential of applying mycorrhizal biotechnology in sustainable horticulture.  相似文献   

17.
Material on the surface of hyphal walls of arbuscular mycorrhizal fungi (AMF) during active colonization of plant roots was detected by a monoclonal antibody. Pot-cultured isolates of Glomus, Acaulospora, Gigaspora, Scutellospora, and Entrophospora had immunofluorescent material (IM) on younger, thinner, intact hyphae, but IM was scant to absent on thicker, melanized or lysing hyphae. Colonization of corn (Zea mays L.), Sudangrass (Sorghum sudanense (Piper) Staph.) or red clover (Trifolium pratense L.) was examined during 5 months of plant growth by removing cores and performing an indirect immunoassay on roots with attached hyphae. Fresh spores of some Glomus spp. had IM on the outer layer of the spore wall. Abundant IM was seen on root hairs of plants colonized by some isolates, and some IM was detected on root surfaces of all plants examined even during early colonization. After cultures were dried, hyphae, roots and spores had little to no IM. Uninoculated control roots had very rare, small patches of IM. An immunoreactive protein was extracted from hyphae of Gigaspora and Glomus isolates by using 20mM citrate (pH 7.0) at 121°C for 90 min. Gel electrophoresis profiles indicated that all isolates tested had the same banding patterns. Lectin-binding of extracted protein is suggestive of a glycoprotein. The immunofluorescence assay can be used to examine root sections for active colonization by AMF, and the potential use of the protein to quantify AMF activity in soil is discussed.  相似文献   

18.
Root colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in plants growing in fly ash pond. Eight species could be separated morphologically, while phylogenetic analyses after PCR amplification of the ITS region followed by RFLP and sequencing revealed seven different AM fungal sequence types. Phylogenetic analysis showed that these sequences cluster into four discrete groups, belonging to the genus Glomus and Archaeospora. Inoculation of plants with spores of AM fungal consortia (Glomus etunicatum, Glomus heterogama, Glomus maculosum, Glomus magnicaule, Glomus multicaule, Glomus rosea, Scutellospora heterogama, and Scutellospora nigra) along with colonized root pieces increased the growth (84.9%), chlorophyll (54%), and total P content (44.3%) of Eucalyptus tereticornis seedlings grown on fly ash compared to non-inoculated seedlings. The growth improvement was the consequence of increased P nutrition and decreased Al, Fe, Zn, and Cu accumulations. These observations suggested that the inoculation of tree seedlings with stress adapted AM fungi aid in the reclamation of fly ash ponds.  相似文献   

19.
Spores of the arbuscular mycorrhizal fungi (AMF) Glomus geosporum and Glomus constrictum were harvested from single-spore-derived pot cultures with either Plantago lanceolata or Hieracium pilosella as host plants. PCR-denaturing gradient gel electrophoresis analysis revealed that the bacterial communities associated with the spores depended more on AMF than host plant identity. The composition of the bacterial populations linked to the spores could be predominantly influenced by a specific spore wall composition or AMF exudate rather than by specific root exudates. The majority of the bacterial sequences that were common to both G. geosporum and G. constrictum spores were affiliated with taxonomic groups known to degrade biopolymers (Cellvibrio, Chondromyces, Flexibacter, Lysobacter, and Pseudomonas). Scanning electron microscopy of G. geosporum spores revealed that these bacteria are possibly feeding on the outer hyaline spore layer. The process of maturation and eventual germination of AMF spores might then benefit from the activity of the surface microorganisms degrading the outer hyaline wall layer.  相似文献   

20.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号