首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural killer (NK) cells are large granular lymphocytes that participate in both innate and adaptive immune responses against tumors and pathogens. They are also involved in other conditions, including organ rejection, graft-versus-host disease, recurrent spontaneous abortions, and autoimmune diseases such as multiple sclerosis. We demonstrate that human NK cells express the potassium channels Kv1.3 and KCa3.1. Expression of these channels does not vary with expression levels of maturation markers but varies between adherent and non-adherent NK cell subpopulations. Upon activation by mitogens or tumor cells, adherent NK (A-NK) cells preferentially up-regulate KCa3.1 and non-adherent (NA-NK) cells preferentially up-regulate Kv1.3. Consistent with this different phenotype, A-NK and NA-NK do not display the same sensitivity to the selective KCa3.1 blockers TRAM-34 and NS6180 and to the selective Kv1.3 blockers ShK-186 and PAP-1 in functional assays. Kv1.3 block inhibits the proliferation and degranulation of NA-NK cells with minimal effects on A-NK cells. In contrast, blocking KCa3.1 increases the degranulation and cytotoxicity of A-NK cells, but not of NA-NK cells. TRAM-34, however, does not affect their ability to form conjugates with target tumor cells, to migrate, or to express chemokine receptors. TRAM-34 and NS6180 also increase the proliferation of both A-NK and NA-NK cells. This results in a TRAM-34-induced increased ability of A-NK cells to reduce in vivo tumor growth. Taken together, our results suggest that targeting KCa3.1 on NK cells with selective blockers may be beneficial in cancer immunotherapy.  相似文献   

2.
The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which are crucial in the activation of human effector memory T cells (T(EM)); selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. The critical motif on the toxin for potassium channel blockade consists of neighboring lysine and tyrosine residues. Because this motif is sufficient for activity, an ShK analogue was designed based on D-amino acids. D-allo-ShK has a structure essentially identical with that of ShK and is resistant to proteolysis. It blocked Kv1.3 with K(d) 36 nm (2,800-fold lower affinity than ShK), was 2-fold selective for Kv1.3 over Kv1.1, and was inactive against other K(+) channels tested. D-allo-ShK inhibited human T(EM) cell proliferation at 100-fold higher concentration than ShK. Its circulating half-life was only slightly longer than that of ShK, implying that renal clearance is the major determinant of its plasma levels. D-allo-ShK did not bind to the closed state of the channel, unlike ShK. Models of D-allo-ShK bound to Kv1.3 show that it can block the pore as effectively as ShK but makes different interactions with the vestibule, some of which are less favorable than for native ShK. The finding that an all-D analogue of a polypeptide toxin retains biological activity and selectivity is highly unusual. Being resistant to proteolysis and nonantigenic, this analogue should be useful in K(+) channel studies; all-d analogues with improved Kv1.3 potency and specificity may have therapeutic advantages.  相似文献   

3.
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ~6 μm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.  相似文献   

4.
The maintenance of T cell memory is critical for the development of rapid recall responses to pathogens, but may also have the undesired side effect of clonal expansion of T effector memory (T(EM)) cells in chronic autoimmune diseases. The mechanisms by which lineage differentiation of T cells is controlled have been investigated, but are not completely understood. Our previous work demonstrated a role of the voltage-gated potassium channel Kv1.3 in effector T cell function in autoimmune disease. In the present study, we have identified a mechanism by which Kv1.3 regulates the conversion of T central memory cells (T(CM)) into T(EM). Using a lentiviral-dominant negative approach, we show that loss of function of Kv1.3 mediates reversion of T(EM) into T(CM), via a delay in cell cycle progression at the G2/M stage. The inhibition of Kv1.3 signaling caused an up-regulation of SMAD3 phosphorylation and induction of nuclear p21(cip1) with resulting suppression of Cdk1 and cyclin B1. These data highlight a novel role for Kv1.3 in T cell differentiation and memory responses, and provide further support for the therapeutic potential of Kv1.3 specific channel blockers in T(EM)-mediated autoimmune diseases.  相似文献   

5.
Yang XF  Yang Y  Lian YT  Wang ZH  Li XW  Cheng LX  Liu JP  Wang YF  Gao X  Liao YH  Wang M  Zeng QT  Liu K 《PloS one》2012,7(4):e36379
Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+) or voltage-gated Na(+) currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v)1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.  相似文献   

6.
Central memory CD8(+) T cells (T(CM)) are considered to be more efficient than effector ones (T(EM)) for mediating protective immunity. The molecular mechanism involved in the generation of these cells remains elusive. Because Bcl6 plays a role in the generation and maintenance of memory CD8(+) T cells, we further examined this role in the process in relation to T(CM) and T(EM) subsets. In this study, we show that T(CM) and T(EM) were functionally identified in CD62L(+) and CD62L(-) memory (CD44(+)Ly6C(+)) CD8(+) T cell subsets, respectively. Although T(CM) produced similar amounts of IFN-gamma and IL-2 to T(EM) after anti-CD3 stimulation, the cell proliferation capacity after stimulation and tissue distribution profiles of T(CM) differed from those of T(EM). Numbers of T(CM) were greatly reduced and elevated in spleens of Bcl6-deficient and lck-Bcl6 transgenic mice, respectively, and those of T(EM) were constant in nonlymphoid organs of these same mice. The majority of Ag-specific memory CD8(+) T cells in spleens of these mice 10 wk after immunization were T(CM), and the number correlated with Bcl6 expression in T cells. The proliferation of Ag-specific memory CD8(+) T cells upon secondary stimulation was dramatically up-regulated in lck-Bcl6 transgenic mice, and the adoptive transfer experiments with Ag-specific naive CD8(+) T cells demonstrated that some of the up-regulation was due to the intrinsic effect of Bcl6 in the T cells. Thus, Bcl6 is apparently a crucial factor for the generation and secondary expansion of T(CM).  相似文献   

7.
Increasing evidence suggests ion channels have critical functions in the differentiation and plasticity of T cells. Kv1.3, a voltage-gated K(+) channel, is a functional marker and a pharmacological target for activated effector memory T cells. Selective Kv1.3 blockers have been shown to inhibit proliferation and cytokine production by human and rat effector memory T cells. We used Kv1.3 knockout (KO) mice to investigate the mechanism by which Kv1.3 blockade affects CD4(+) T cell differentiation during an inflammatory immune-mediated disease. Kv1.3 KO animals displayed significantly lower incidence and severity of myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis. Kv1.3 was the only K(V) channel expressed in MOG 35-55-specific CD4(+) T cell blasts, and no K(V) current was present in MOG-specific CD4(+) T cell-blasts from Kv1.3 KO mice. Fewer CD4(+) T cells migrated to the CNS in Kv1.3 KO mice following disease induction, and Ag-specific proliferation of CD4(+) T cells from these mice was impaired with a corresponding cell-cycle delay. Kv1.3 was required for optimal expression of IFN-γ and IL-17, whereas its absence led to increased IL-10 production. Dendritic cells from Kv1.3 KO mice fully activated wild-type CD4(+) T cells, indicating a T cell-intrinsic defect in Kv1.3 KO mice. The loss of Kv1.3 led to a suppressive phenotype, which may contribute to the mechanism by which deletion of Kv1.3 produces an immunotherapeutic effect. Skewing of CD4(+) T cell differentiation toward Ag-specific regulatory T cells by pharmacological blockade or genetic suppression of Kv1.3 might be beneficial for therapy of immune-mediated diseases such as multiple sclerosis.  相似文献   

8.
Allograft vasculopathy (AV) remains one of the major challenges to the long-term functioning of solid organ transplants. Although its exact pathogenesis remains unclear, AV is characterized by both fibromuscular proliferation and infiltration of CD4+ memory T cells. We here tested whether two experimental immunosuppressants targeting K+ channels might be useful for preventing AV. PAP-1 inhibits the voltage-gated Kv1.3 channel, which is overexpressed on CCR7 memory T cells and we therefore hypothesize that it should suppress the memory T cell component of AV. Based on its previous efficacy in restenosis and kidney fibrosis we expected that the KCa3.1 blocker TRAM-34 would primarily affect smooth muscle and fibroblast proliferation and thus reduce intimal hyperplasia. Using immunohistochemistry we demonstrated the presence of Kv1.3 on infiltrating T cells and of KCa3.1 on lymphocytes as well as on proliferating neointimal smooth muscle cells in human vasculopathy samples and in a rat aorta transplant model developing chronic AV. Treatment of PVG rats receiving orthotopically transplanted aortas from ACI rats with TRAM-34 dose-dependently reduced aortic luminal occlusion, intimal hyperplasia, mononuclear cell infiltration and collagen deposition 120 days after transplantation. The Kv1.3 blocker PAP-1 in contrast did not reduce intima hyperplasia despite drastically reducing plasma IFN-γ levels and inhibiting lymphocyte infiltration. Our findings suggest that KCa3.1 channels play an important role in the pathogenesis of chronic AV and constitute an attractive target for the prevention of arteriopathy.  相似文献   

9.
The voltage-gated potassium channel, Kv1.3, is specifically expressed on human lymphocytes, where it controls membrane potential and calcium influx. Blockade of Kv1.3 channels by margatoxin was previously shown to prevent T cell activation and attenuate immune responses in vivo. In the present study, a triterpene natural product, correolide, was found to block Kv1.3 channels in human and miniswine T cells by electrophysiological characterization. T cell activation events, such as anti-CD3-induced calcium elevation, IL-2 production, and proliferation were inhibited by correolide in a dose-dependent manner. More potent analogs were evaluated for pharmacokinetic profiles and subsequently tested in a delayed-type hypersensitivity (DTH) response to tuberculin in the miniswine. Two compounds were dosed orally, iv, or im, and both compounds suppressed DTH responses, demonstrating that small molecule blockers of Kv1.3 channels can act as immunosuppressive agents in vivo. These studies establish correolide and its derivatives as novel immunosuppressants.  相似文献   

10.
OBJECTIVE: Recently, our team has demonstrated that voltage-gated delayed rectifier K(+) current (IK(DR)) and Ca(2+)-activated K(+) current (I(KCa)) are present in rat bone marrow-derived mesenchymal stem cells; however, little is known of their physiological roles. The present study was designed to investigate whether functional expression of IK(DR) and I(KCa) would change with cell cycle progression, and whether they could regulate proliferation in undifferentiated rat mesenchymal stem cells (MSCs). MATERIALS AND METHODS: Membrane potentials and ionic currents were recorded using whole-cell patch clamp technique, cell cycling was analysed by flow cytometry, cell proliferation was assayed with DNA incorporation method and the related genes were down-regulated by RNA interference (RNAi) and examined using RT-PCR. RESULTS: It was found that membrane potential hyperpolarized, and cell size increased during the cell cycle. In addition, IK(DR) decreased, while I(KCa) increased during progress from G(1) to S phase. RT-PCR revealed that the mRNA levels of Kv1.2 and Kv2.1 (likely responsible for IK(DR)) reduced, whereas the mRNA level of KCa3.1 (responsible for intermediate-conductance I(KCa)) increased with the cell cycle progression. Down-regulation of Kv1.2, Kv2.1 or KCa3.1 with the specific RNAi, targeted to corresponding gene inhibited proliferation of rat MSCs. CONCLUSION: These results demonstrate that membrane potential, IK(DR) and I(KCa) channels change with cell cycle progression and corresponding alteration of gene expression. IK(DR) and intermediate-conductance I(KCa) play an important role in maintaining membrane potential and they participate in modulation of proliferation in rat MSCs.  相似文献   

11.
Kv1.3, the voltage-gated potassium channel in human T cells, represents a new target for treating immunosuppression and autoimmune diseases. Correolide (1), a pentacyclic natural product, is a potent and selective Kv1.3 channel blocker. Simplification of correolide via removal of its E-ring generates enone 4, whose modification produced a new series of tetracyclic Kv1.3 blockers. The structure-activity relationship for this class of compounds in two functional assays, Rb_Kv and human T cell proliferation, is presented herein. The most potent analog 43 is 15-fold more potent than correolide as inhibitor of human T cell proliferation.  相似文献   

12.
Electrophysiological properties of human adipose tissue-derived stem cells   总被引:2,自引:0,他引:2  
Human adipose tissue-derived stem cells (hASCs) represent a potentially valuable cell source for clinical therapeutic applications. The present study was designed to investigate properties of ionic channel currents present in undifferentiated hASCs and their impact on hASCs proliferation. The functional ion channels in hASCs were analyzed by whole-cell patch-clamp recording and their mRNA expression levels detected by RT-PCR. Four types of ion channels were found to be present in hASCs: most of the hASCs (73%) showed a delayed rectifier-like K(+) current (I(KDR)); Ca(2+)-activated K(+) current (I(KCa)) was detected in examined cells; a transient outward K(+) current (I(to)) was recorded in 19% of the cells; a small percentage of cells (8%) displayed a TTX-sensitive transient inward sodium current (I(Na.TTX)). RT-PCR results confirmed the presence of ion channels at the mRNA level: Kv1.1, Kv2.1, Kv1.5, Kv7.3, Kv11.1, and hEAG1, possibly encoding I(KDR); MaxiK, KCNN3, and KCNN4 for I(KCa); Kv1.4, Kv4.1, Kv4.2, and Kv4.3 for I(to) and hNE-Na for I(Na.TTX). The I(KDR) was inhibited by tetraethyl ammonium (TEA) and 4-aminopyridine (4-AP), which significantly reduced the proliferation of hASCs in a dose-dependent manner (P < 0.05), as suggested by bromodeoxyurindine (BrdU) incorporation. Other selective potassium channel blockers, including linopiridine, iberiotoxin, clotrimazole, and apamin also significantly inhibited I(KDR). TTX completely abolished I(Na.TTX). This study demonstrates for the first time that multiple functional ion channel currents such as I(KDR), I(KCa), I(to), and I(Na.TTX) are present in undifferentiated hASCs and their potential physiological function in these cells as a basic understanding for future in vitro experiments and in vivo clinical investigations.  相似文献   

13.
Mouse 3T3-L1 preadipocytes are widely used for metabolic study of obesity; however, their cellular physiology is not fully understood. The present study investigates functional ion channels and their role in the regulation of cell proliferation using whole-cell patch voltage-clamp, RT-PCR, Western blot, and cell proliferation assay in undifferentiated 3T3-L1 preadipocytes. We found three types of ionic currents present in 3T3-L1 preadipocytes, including an inwardly-rectifying K(+) current (I(Kir), recorded in 15% of cells) inhibited by Ba(2+), a Ca(2+)-activated intermediate K(+) current (IK(Ca), recorded in 44% of cells) inhibited by clotrimazole (or TRAM-34) as well as a chloride current (I(Cl)) inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in 12% of cells, which can be activated in all cells with hypotonic (0.8 T) insult, implicating a volume-sensitive I(Cl) (I(Cl.vol)). RT-PCR and Western blot analysis revealed the expression of KCa3.1 (for IK(Ca)), Kir2.1 (for I(Kir)), and Clcn3 (for I(Cl.vol)). Blockade of IK(Ca) with TRAM-34 or I(Cl.vol) with DIDS inhibited cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific siRNAs also suppressed cell proliferation. Flow cytometry analysis showed that blockade or silencing of KCa3.1 or Clcn3 channels with corresponding blockers or siRNAs caused an accumulation of cells at the G0/G1 phase. These results demonstrate that three functional ion channel currents, I(KCa), I(Cl.vol), and I(Kir), are heterogeneously present in 3T3-L1 preadipocytes. I(KCa) and I(Cl.vol) participate in the regulation of cell proliferation.  相似文献   

14.
The voltage gated potassium channel (Kv1.3) has been shown to play a role in immune responsiveness. Blockade of the channel led to diminution of T cell activation and delayed type hypersensitivity. Previous in vitro studies of the blockade were focused on T cell activation and proliferation. In this study we examined other T and monocytic cell mediated events to glean the extent of the immunosuppressive effects of a Kv1.3 specific inhibitor, Margatoxin (MgTX). We found that MgTX inhibited the intracellular production of Th-1 as well as Th-2 cytokines. MgTX can also inhibit IL-2 production and proliferation of T cells upon stimulation with anti-CD3 and VCAM-1. Furthermore, a redirected cytolytic activity was also inhibited by MgTX. However, MgTX did not inhibit generation of CTL to EBV transformed lymphoma cells or antibody-dependent cellular cytolysis mediated by monocytes. It appears that a Kv1.3 blockade does not affect all immune responses, particularly those of innate immunity.  相似文献   

15.
Nucleoside diphosphate kinases (NDPKs) are encoded by the Nme (non-metastatic cell) gene family. Although they comprise a family of 10 genes, NDPK-A and -B are ubiquitously expressed and account for most of the NDPK activity. We previously showed that NDPK-B activates the K(+) channel KCa3.1 via histidine phosphorylation of the C terminus of KCa3.1, which is required for T cell receptor-stimulated Ca(2+) flux and proliferation of activated naive human CD4 T cells. We now report the phenotype of NDPK-B(-/-) mice. NDPK-B(-/-) mice are phenotypically normal at birth with a normal life span. Although T and B cell development is normal in NDPK-B(-/-) mice, KCa3.1 channel activity and cytokine production are markedly defective in T helper 1 (Th1) and Th2 cells, whereas Th17 function is normal. These findings phenocopy studies in the same cells isolated from KCa3.1(-/-) mice and thereby support genetically that NDPK-B functions upstream of KCa3.1. NDPK-A and -B have been linked to an astonishing array of disparate cellular and biochemical functions, few of which have been confirmed in vivo in physiological relevant systems. NDPK-B(-/-) mice will be an essential tool with which to definitively address the biological functions of NDPK-B. Our finding that NDPK-B is required for activation of Th1 and Th2 CD4 T cells, together with the normal overall phenotype of NDPK-B(-/-) mice, suggests that specific pharmacological inhibitors of NDPK-B may provide new opportunities to treat Th1- and Th2-mediated autoimmune diseases.  相似文献   

16.
Memory T cells are heterogeneous in terms of their phenotype and functional properties. We investigated the molecular profiles of human CD8 naive central memory (T(CM)), effector memory (T(EM)), and effector memory RA (T(EMRA)) T cells using gene expression microarrays and phospho-protein-specific intracellular flow cytometry. We demonstrate that T(CM) have a gene expression and cytokine signaling signature that lies between that of naive and T(EM) or T(EMRA) cells, whereas T(EM) and T(EMRA) are closely related. Our data define the molecular basis for the different functional properties of central and effector memory subsets. We show that T(EM) and T(EMRA) cells strongly express genes with known importance in CD8 T cell effector function. In contrast, T(CM) are characterized by high basal and cytokine-induced STAT5 phosphorylation, reflecting their capacity for self-renewal. Altogether, our results distinguish T(CM) and T(EM)/T(EMRA) at the molecular level and are consistent with the concept that T(CM) represent memory stem cells.  相似文献   

17.
Dendritic cell-derived indoleamine 2,3-dioxygenase (IDO) suppresses naive T cell proliferation and induces their apoptosis by catalyzing tryptophan, and hence is essential for the maintenance of peripheral tolerance. However, it is not known whether memory T cells are subject to the regulation by IDO-mediated tryptophan catabolism, as memory T cells respond more rapidly and vigorously than their naive counterparts and are resistant to conventional costimulatory blockade. In this study, we present the evidence that memory CD8+ T cells are susceptible to tryptophan catabolism mediated by IDO. We found that overexpression of IDO in vivo attenuated the generation of both central memory CD8+ T cells (T(CM)) and effector memory CD8+ T cells (T(EM)) while suppressing IDO activity promoted their generation. Moreover, IDO overexpression suppressed the effector function of T(CM) cells or T(CM) cell-mediated allograft rejection as well as their proliferation in vivo. Interestingly, T(CM) cells were resistant to apoptosis induced by tryptophan catabolism. However, IDO overexpression did not suppress the effector function of T(EM) cells or T(EM) cell-mediated allograft rejection, suggesting that T(EM) cells, unlike T(CM) cells, do not require tryptophan for their effector function once they are generated. This study provides insight into the mechanisms underlying the differential regulation of memory T cell responsiveness and has clinical implications for vaccination or tolerance induction.  相似文献   

18.
The small molecule 5-(4-phenoxybutoxy)psoralen (PAP-1) is a selective blocker of the voltage-gated potassium channel Kv1.3 that is highly expressed in cell membranes of activated effector memory T cells (TEMs). The blockade of Kv1.3 results in membrane depolarization and inhibition of TEM proliferation and function. In this study, the in vitro effects of PAP-1 on T cells and the in vivo toxicity and pharmacokinetics (PK) were examined in rhesus macaques (RM) with the ultimate aim of utilizing PAP-1 to define the role of TEMs in RM infected with simian immunodeficiency virus (SIV). Electrophysiologic studies on T cells in RM revealed a Kv1.3 expression pattern similar to that in human T cells. Thus, PAP-1 effectively suppressed TEM proliferation in RM. When administered intravenously, PAP-1 showed a half-life of 6.4 hrs; the volume of distribution suggested extensive distribution into extravascular compartments. When orally administered, PAP-1 was efficiently absorbed. Plasma concentrations in RM undergoing a 30-day, chronic dosing study indicated that PAP-1 levels suppressive to TEMs in vitro can be achieved and maintained in vivo at a non-toxic dose. PAP-1 selectively inhibited the TEM function in vivo, as indicated by a modest reactivation of cytomegalovirus (CMV) replication. Immunization of these chronically treated RM with the live influenza A/PR8 (flu) virus suggested that the development of an in vivo, flu-specific, central memory response was unaffected by PAP-1. These RM remained disease-free during the entire course of the PAP-1 study. Collectively, these data provide a rational basis for future studies with PAP-1 in SIV-infected RM.  相似文献   

19.
Recently we found that CXCL12/SDF-1 is a costimulator of peripheral CD4+ T cells. In this study, we report that CXCL12 alone induced expression of activation markers by peripheral CD4+ memory T cells and costimulated activation marker expression by anti-CD3 stimulated peripheral CD4+ naive and CD4+ memory T cells as well as by peripheral CD8+ T cells. The stimulation by CXCL12 was inhibited by Pertussis Toxin (PTX), but not by anti-CD25 mAb. CXCL12 also induced enhancement of IL-2 production and proliferation by anti-CD3 stimulated CD4+ memory T cells, but not by CD4+ naive T cells. PTX inhibited the enhancement of IL-2 production and proliferation, whereas anti-CD25 mAb inhibited proliferation, but not IL-2 production. Thus, CXCL12 upregulated T-cell activation, and a G-coupled protein mediated signaling pathway was necessary for stimulation of T cells by CXCL12.  相似文献   

20.
In T lymphocyte, activation of Kv1.3 channel, the major voltage-dependent K+ channel, is an essential step for cell proliferation in immune responses. Here, effects of anti-CD3 and anti-CD28 antibodies on Kv1.3 current were examined in three types of human T lymphocyte derived cell lines, Jurkat E6-1, p56lck-kinase deficient mutant JCaM.1, and CD45-phosphatase deficient mutant J45.01. Kv1.3 current was partly reduced by CD3 stimulation and more strongly by addition of anti-CD28 antibody in E6-1. In JCaM.1, Kv1.3 current responses to anti-CD28/CD3 antibodies were similar to those in E6-1. In J45.01, CD3 stimulation partly inhibited Kv1.3 current, but the additive reduction by CD28 stimulation was not significant. The inhibition of tyrosine phosphatase in E6-1 abolished the additional inhibition by anti-CD28 antibody in a similar manner as in J45.01. In conclusion, the stimulation of CD28 in addition to CD3 strongly inhibits Kv1.3 current and this additive inhibition is mediated by CD45 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号