首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of denaturation transition thermodynamic parameters in various collagens from imino acid compositions has been analysed. Computational and experimental data suggest independence of the collagen molecule hydration on imino acid composition and sequence in the polypeptide chain. The continuous net of hydrogen bonds is interrupted, if imino acid residues occur in the sequence of amino acid residues, as follows from Monte Carlo computations, because the hydrogen of NH-group plays sufficient role in water shell formation for this conformation. As a consequence, entropy of denatured collagen-water system increases hand by hand with increasing imino acid content and therefore delta S increases. The increase of enthalpy of transition from imino acid content is determined by favorable Van der Waals interactions of pyrrolidine rings in native triple helical collagen structure. It was pointed out that proline role is determined by decreasing hydration in the single stranded polypeptide chain in Polyproline II conformation that leads to an increase of entropy of the polypeptide-water system. Thus, the collagen structure formation by imino acids is promoted in the water media due to single chain left-helical conformation being unfavorable for proline residues as well as due to the enthalpy nature of the triple helix stabilization.  相似文献   

2.
The collagen triple helix is the most abundant protein fold in humans. Despite its deceptively simple structure, very little is understood about its folding and fibrillization energy landscape. In this work, using a combination of x-ray crystallography and nuclear magnetic resonance spectroscopy, we carry out a detailed study of stabilizing pair-wise interactions between the positively charged lysine and the negatively charged amino acids aspartate and glutamate. We find important differences in the side chain conformation of amino acids in the crystalline and solution state. Structures from x-ray crystallography may have similarities to the densely packed triple helices of collagen fibers whereas solution NMR structures reveal the simpler interactions of isolated triple helices. In solution, two distinct types of contacts are observed: axial and lateral. Such register-specific interactions are crucial for the understanding of the registration process of collagens and the overall stability of proteins in this family. However, in the crystalline state, there is a significant rearrangement of the side chain conformation allowing for packing interactions between adjacent helices, which suggests that charged amino acids may play a dual role in collagen stabilization and folding, first at the level of triple helical assembly and second during fibril formation.  相似文献   

3.
A winter flounder antifreeze polypeptide (HPLC-6) has been studied in vacuo and in aqueous solution using molecular dynamics computer simulation techniques. The helical conformation of this polypeptide was found to be stable both in vacuum and in solution. The major stabilizing interactions were found to be the main-chain hydrogen bonds, a salt-bridge interaction, and solute–solvent hydrogen bonds. A significant bending in the middle of the polypeptide chain was observed both in vacuo and in solvent at 300 K. Possible causes of the bending are discussed. From simulations of mutant polypeptide molecules in vacuo, it is concluded that the bend in the native polypeptide was caused by side chain to backbone hydrogen bond competition involving the Thr 24 side chain and facilitated by strains on the helix resulting from the Lys 18-Glu 22 salt bridge. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Abstract

The triple helical conformation observed in the collagen group of proteins is related to the presence of large numbers of imino residues and is derived from the stereochemical properties of these residues. The triple helix is stabilized by increasing numbers of these residues. Hydrogen bonds are usually considered to be a major factor in the formation and stability of protein conformation, however, imino residues are not hydrogen bond donors. We have evaluated the role of these residues in stabilizing the triple helix by re-examining two X-ray based structures of the triple helical polypeptide (Pro-Pro- Gly)10 using molecular mechanics calculations. The two minimized structures are comparable in energy and have helical parameters close to the starting values for each starting structure. Our studies suggest that clusters of close van der Waals contacts between proline residues in adjacent chains contribute significantly to the stability of the triple helix. Preliminary NMR studies support this concept. We propose that non-bonded interactions between proline residues may be a significant stabilizing force in the triple helix generated by (Pro-Pro-Gly)10.  相似文献   

5.
Basement membrane (type IV) collagen is a heteropolymer   总被引:10,自引:0,他引:10  
Type IV collagen was isolated in high yield from bovine kidney cortex. The protein revealed Mr = 380,000 and contained, in a 2:1 ratio, two different disulfide-linked polypeptide chains, C-1 and D-1 (Mr = 125,000). Carboxymethyl-cellulose chromatography before and after reduction proved that the two polypeptide chains are arranged in a single triple helical molecule with the chain composition (C-1)2(D-1). The disulfide bridges appear to be located 180 amino acid residues from the NH2 terminus of the chains.  相似文献   

6.
Type XIII collagen is a type II transmembrane protein predicted to consist of a short cytosolic domain, a single transmembrane domain, and three collagenous domains flanked by noncollagenous sequences. Previous studies on mRNAs indicate that the structures of the collagenous domain closest to the cell membrane, COL1, the adjacent noncollagenous domain, NC2, and the C-terminal domains COL3 and NC4 are subject to alternative splicing. In order to extend studies of type XIII collagen from cDNAs to the protein level we have produced it in insect cells by means of baculoviruses. Type XIII collagen alpha chains were found to associate into disulfide-bonded trimers, and hydroxylation of proline residues dramatically enhanced this association. This protein contains altogether eight cysteine residues, and interchain disulfide bonds could be located in the NC1 domain and possibly at the junction of COL1 and NC2, while the two cysteine residues in NC4 are likely to form intrachain bonds. Pepsin and trypsin/chymotrypsin digestions indicated that the type XIII collagen alpha chains form homotrimers whose three collagenous domains are in triple helical conformation. The thermal stabilities (T(m)) of the COL1, COL2, and COL3 domains were 38, 49 and 40 degrees C, respectively. The T(m) of the central collagenous domain is unusually high, which in the light of this domain being invariant in terms of alternative splicing suggests that the central portion of the molecule may have an important role in the stability of the molecule. All in all, most of the type XIII collagen ectodomain appears to be present in triple helical conformation, which is in clear contrast to the short or highly interrupted triple helical domains of the other known collagenous transmembrane proteins.  相似文献   

7.
Fibre type X-ray diffraction patterns have been obtained from oriented, semicrystalline films prepared from the sodium salt form of the bacterial capsular polysaccharide of Klebsiella serotype K9. The molecule has a pentasaccharide repeating sequence, with four neutral residues in the backbone and a glucoronic acid side chain. A novel feature of the molecule is the incorporation of α-l-rhamnose residues, one 1,2 linked and two 1,3 linked in the backbone. Analysis of the X-ray diffraction results indicate an extended three-fold helical conformation with an axially projected chemical repeat of 1.377 nm. Both left and right handed helices have been examined using linked atom least squares techniques to optimize the stereochemistry while simultaneously meeting the observed helical parameters.  相似文献   

8.
The crystal structure of the triple‐helical peptide (Pro‐Hyp‐Gly)3‐Pro‐Arg‐Gly‐(Pro‐Hyp‐Gly)4 (POG3‐PRG‐POG4) was determined at 1.45 Å resolution. POG3‐PRG‐POG4 was designed to permit investigation of the side‐chain conformation of the Arg residues in a triple‐helical structure. Because of the alternative structure of one of three Arg residues, four side‐chain conformations were observed in an asymmetric unit. Among them, three adopt a ttg?t conformation and the other adopts a tg?g?t conformation. A statistical analysis of 80 Arg residues in various triple‐helical peptides showed that, unlike those in globular proteins, they preferentially adopt a tt conformation for χ1 and χ2, as observed in POG3‐PRG‐POG4. This conformation permits van der Waals contacts between the side‐chain atoms of Arg and the main‐chain atoms of the adjacent strand in the same molecule. Unlike many other host–guest peptides, in which there is a significant difference between the helical twists in the guest and the host peptides, POG3‐PRG‐POG4 shows a marked difference between the helical twists in the N‐terminal peptide and those in the C‐terminal peptide, separated near the Arg residue. This suggested that the unique side‐chain conformation of the Arg residue affects not only the conformation of the guest peptide, but also the conformation of the peptide away from the Arg residue. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1000–1009, 2014.  相似文献   

9.
(15)N NMR relaxation parameters and amide (1)H/(2)H-exchange rates have been used to characterize the structural flexibility of human growth hormone (rhGH) at neutral and acidic pH. Our results show that the rigidity of the molecule is strongly affected by the solution conditions. At pH 7.0 the backbone dynamics parameters of rhGH are uniform along the polypeptide chain and their values are similar to those of other folded proteins. In contrast, at pH 2.7 the overall backbone flexibility increases substantially compared to neutral pH and the average order parameter approaches the lower limit expected for a folded protein. However, a significant variation of the backbone dynamics through the molecule indicates that under acidic conditions the mobility of the residues becomes more dependent on their location within the secondary structure units. In particular, the order parameters of certain loop regions decrease dramatically and become comparable to those found in unfolded proteins. Furthermore, the HN-exchange rates at low pH reveal that the residues most protected from exchange are clustered at one end of the helical bundle, forming a stable nucleus. We suggest that this nucleus maintains the overall fold of the protein under destabilizing conditions. We therefore conclude that the acid state of rhGH consists of a structurally conserved, but dynamically more flexible helical core surrounded by an aura of highly mobile, unstructured loops. However, in spite of its prominent flexibility the acid state of rhGH cannot be considered a "molten globule" state because of its high stability. It appears from our work that under certain conditions, a protein can tolerate a considerable increase in flexibility of its backbone, along with an increased penetration of water into its core, while still maintaining a stable folded conformation.  相似文献   

10.
This paper reports the behaviour of scleroglucan in aqueous solution as a function of NaOH concentration and temperature. Two different transitions are observed. The first one, reversible when temperature varies, is attributed to a change in the local structure of the side chain glucose residues and water organization in the triple helix conformation. The second one, irreversible, is due to the conformational transition from the triple helix to the coil. It is found that 0.20 and 0.01 m NaOH are good solvents to charaterize the single chain and the triple helical structure respectively. The presence of NaOH, even at the low concentration 0.01 m, modifies the polymer solubility such as to prevent gel formation, which may occur in the absence of added salt due to triple helix interactions at temperature below the temperatures of the first transition.  相似文献   

11.
Structural hierarchy controls deformation behavior of collagen   总被引:1,自引:0,他引:1  
The structure of collagen, the most abundant protein in mammals, consists of a triple helix composed of three helical polypeptide chains. The deformation behavior of collagen is governed by molecular mechanisms that involve the interaction between different helical hierarchies found in collagen. Here, we report results of Steered Molecular Dynamics study of the full-length collagen molecule (~290 nm). The collagen molecule is extended at various pulling rates ranging from 0.00003/ps to 0.012/ps. These simulations reveal a new level of hierarchy exhibited by collagen: helicity of the triple chain. This level of hierarchy is apparent at the 290 nm length and cannot be observed in the 7-9 nm models often described to evaluate collagen mechanics. The deformation mechanisms in collagen are governed by all three levels of hierarchy, helicity of single chain (level-1), helical triple helix (level-2), and hereby described helicity of the triple chain (level-3). The mechanics resulting from the three levels is described by an interlocking gear analogy. In addition, remarkably, the full-length collagen does not show much unwinding of triple helix unlike that exhibited by short collagen models. Further, the full-length collagen does not show significant unwinding of the triple helix, unlike that exhibited by short collagen. Also reported is that the interchain hydrogen bond energy in the full-length collagen is significantly smaller than the overall interchain nonbonded interaction energies, suggesting that the nonbonded interactions have far more important role than hydrogen bonds in the mechanics of collagen. However, hydrogen bonding is essential for the triple helical conformation of the collagen. Hence, although mechanics of collagen is controlled by nonbonded interchain interaction energies, the confirmation of collagen is attributed to the interchain hydrogen bonding.  相似文献   

12.
A Otter  P G Scott  G Kotovych 《Biochemistry》1988,27(10):3560-3567
The solution conformation of the alpha-1 chain C-telopeptide has been studied by circular dichroism (CD) and 600-MHz 1H NMR spectroscopy in 60% CD3OH/40% H2O solution. The C-telopeptide contains 27 amino acids which form the C-terminal end of the alpha-1 collagen polypeptide chain. By the combined application of various two-dimensional, phase-sensitive NMR techniques (COSY, RELAY, NOESY, ROESY), a nearly complete assignment of all proton resonances was achieved. Furthermore, the backbone conformation could be established, on the basis of coupling constant and NOE data. The spectroscopic evidence indicates that large sections of the peptide exist in a nonrandom, extended conformation and that there are two segments of higher mobility around the two Gly-Gly units in positions 2,3 and 20,21. Despite these hingelike, flexible sections no measurable fold-back of any of the extended parts was evident. On the basis of this structure, a model is proposed for the simultaneous interaction of the C-telopeptide with two adjacent collagen triple helices within the growing collagen fibril.  相似文献   

13.
In theory, a polypeptide chain can adopt a vast number of conformations, each corresponding to a set of backbone rotation angles. Many of these conformations are excluded due to steric overlaps. Ramachandran and coworkers were the first to look into this problem by plotting backbone dihedral angles in a two-dimensional plot. The conformational space in the Ramachandran map is further refined by considering the energetic contributions of various non-bonded interactions. Alternatively, the conformation adopted by a polypeptide chain may also be examined by investigating interactions between the residues. Since the Ramachandran map essentially focuses on local interactions (residues closer in sequence), out of interest, we have analyzed the dihedral angle preferences of residues that make non-local interactions (residues far away in sequence and closer in space) in the folded structures of proteins. The non-local interactions have been grouped into different types such as hydrogen bond, van der Waals interactions between hydrophobic groups, ion pairs (salt bridges), and ππ-stacking interactions. The results show the propensity of amino acid residues in proteins forming local and non-local interactions. Our results point to the vital role of different types of non-local interactions and their effect on dihedral angles in forming secondary and tertiary structural elements to adopt their native fold.  相似文献   

14.
beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix.  相似文献   

15.
The clinical severity of Osteogenesis Imperfecta (OI), also known as the brittle bone disease, relates to the extent of conformational changes in the collagen triple helix induced by Gly substitution mutations. The lingering question is why Gly substitutions at different locations of collagen cause different disruptions of the triple helix. Here, we describe markedly different conformational changes of the triple helix induced by two Gly substitution mutations placed only 12 residues apart. The effects of the Gly substitutions were characterized using a recombinant collagen fragment modeling the 63-residue segment of the alpha1 chain of type I collagen containing no Hyp (residues 877-939) obtained from Escherichia coli. Two Gly --> Ser substitutions at Gly-901 and Gly-913 associated with, respectively, mild and severe OI variants were introduced by site-directed mutagenesis. Biophysical characterization and limited protease digestion experiments revealed that while the substitution at Gly-901 causes relatively minor destabilization of the triple helix, the substitution at Gly-913 induces large scale unfolding of an unstable region C-terminal to the mutation site. This extensive unfolding is caused by the intrinsic low stability of the C-terminal region of the helix and the mutation induced disruption of a set of salt bridges, which functions to lock this unstable region into the triple helical conformation. The extensive conformational changes associated with the loss of the salt bridges highlight the long range impact of the local interactions of triple helix and suggest a new mechanism by which OI mutations cause severe conformational damages in collagen.  相似文献   

16.
Fibre type X-ray diffraction patterns have been obtained from oriented, semi-crystalline films prepared from the sodium salt of the capsular polysaccharide of Klebsiella serotype K25. This molecule has a tetrasaccharide repeating structure consisting of a disaccharide backbone and a disaccharide side chain. The backbone contains a di-equatorially 1,4 linked β-d-glucose residue followed by a di-equatorially 1,3 linked β-d-galactose residue. The side chain is attached to the axial O(4) position of the galactose residue and consists of a di-equaltorially 1,2 linked β-d-glucoronic acid with a β-d-glucose residue attached terminally. An interesting feature of the backbone linkage geometry of this polysaccharide is its similarity with those of the animal connective tissue polydisaccharides. Analysis of diffraction patterns gives rise to an extended three fold helical conformation with an axially projected advance per chemical repeat of 0.97 nm. Molecular models have been computer generated using least squares techniques to optimize interatomic contacts and simultaneously meet the observed helical parameters. A left handed helix with inter-residue stabilizing hydrogen bonds was found to be most favourable and comparison of this model with other relevant polysaccharide structures is male.  相似文献   

17.
The three-dimensional structure of the activation domain isolated from porcine pancreatic procarboxypeptidase B was determined using 1H NMR spectroscopy. A group of 20 conformers is used to describe the solution structure of this 81 residue polypeptide chain, which has a well-defined backbone fold from residues 11-76 with an average root mean square distance for the backbone atoms of 1.0 +/- 0.1 A relative to the mean of the 20 conformers. The molecular architecture contains a four-stranded beta-sheet with the polypeptide segments 11-17, 36-39, 50-56 and 75-76, two well defined alpha-helices from residues 20-30 and 60-70, and a 3(10) helix from residues 43-46. The three helices are oriented almost exactly antiparallel to each other, are all on the same side of the beta-sheet, and the helix axes from an angle of approximately 45 degrees relative to the direction of the beta-strands. Three segments linking beta-strands and helical secondary structures, with residues 32-35, 39-43 and 56-61, are significantly less well ordered than the rest of the molecule. In the three-dimensional structure two of these loops (residues 32-35 and 56-61) are located close to each other near the protein surface, forming a continuous region of increased mobility, and the third disordered loop is separated from this region only by the peripheral beta-strand 36-39 and precedes the short 3(10) helix.  相似文献   

18.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

19.
Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.  相似文献   

20.
Chen Z  Xu P  Barbier JR  Willick G  Ni F 《Biochemistry》2000,39(42):12766-12777
The solution conformations of a selectively osteogenic 1-31 fragment of the human parathyroid hormone (hPTH), hPTH(1-31)NH(2), have been characterized by use of very high field NMR spectroscopy at 800 MHz. The combination of the CalphaH proton and (13)Calpha chemical shifts, (3)J(NH)(alpha) coupling constants, NH proton temperature coefficients, and backbone NOEs reveals that the hPTH(1-31)NH(2) peptide has well-formed helical structures localized in two distinct segments of the polypeptide backbone. There are also many characteristic NOEs defining specific side-chain/backbone and side-chain/side-chain contacts within both helical structures. The solution structure of hPTH(1-31)NH(2) contains a short N-terminal helical segment for residues 3-11, including the helix capping residues 3 and 11 and a long C-terminal helix for residues 16-30. The two helical structures are reinforced by well-defined capping motifs and side-chain packing interactions within and at both ends of these helices. On one face of the C-terminal helix, there are side-chain pairs of Glu22-Arg25, Glu22-Lys26, and Arg25-Gln29 that can form ion-pair and/or hydrogen bonding interactions. On the opposite face of this helix, there are characteristic hydrophobic interactions involving the aromatic side chain of Trp23 packing against the aliphatic side chains of Leu15, Leu24, Lys27, and Leu28. There is also a linear array of hydrophobic residues from Val2, to Leu7, to Leu11 and continuing on to residues His14 and Leu15 in the hinge region and to Trp23 in the C-terminal helix. Capping and hydrophobic interactions at the end of the N-terminal and at the beginning of the C-terminal helix appear to consolidate the helical structures into a V-shaped overall conformation for at least the folded population of the hPTH(1-31)NH(2) peptide. Stabilization of well-folded conformations in this linear 1-31 peptide fragment and possibly other analogues of human PTH may have a significant impact on the biological activities of the PTH peptides in general and specifically for the osteogenic/anabolic activities of bone-building PTH analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号