首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乳酸菌食品级nisin控制的基因表达系统NICE   总被引:3,自引:0,他引:3  
乳酸菌安全应用于人们的生产和生活已有上千年的历史,是一种食品级的微生物。在过去二十年里,其生理及遗传学特性已被彻底研究。由于其遗传可行且操作简单,乳酸菌除了其传统应用外已被广泛用于表达异源基因,在食品、农业及医药工程领域具有重要的应用前景。人们已开发了一系列乳酸菌食品级基因表达系统。本文主要介绍了乳酸菌,重点是其模式菌Lactococcus lactis最常见的食品级诱导表达系统--nisin控制的基因表达系统NIC E及其食品级诱导物nisin、食品级的宿主及表达载体系统,以及NICE系统在表达异源基因方面的应用。  相似文献   

2.
【背景】乳链菌肽主要是由乳酸乳球菌生产的一类多肽,对革兰氏阳性菌有抑菌作用,是目前联合国粮食及农业组织/世界卫生组织唯一批准使用的天然食品防腐剂。但是其产量低、缺乏简便高效的检测方法,限制了其研究和应用。【目的】构建一种可输出肉眼可见红色荧光的细胞分子传感器,以期能简单方便地检测样品中的乳链菌肽,同时应用该传感器筛选乳链菌肽生产菌株。【方法】用Golden-Gate克隆方法构建含乳链菌肽诱导启动子和下游红色荧光蛋白基因(两种)的载体,转入Lactococcus lactis中。用细胞传感器筛选可能的乳链菌肽生产菌株。【结果】构建的两种乳链菌肽细胞分子传感器都能对2-200 ng/mL乳链菌肽有灵敏的响应,可用于定量测定。两种传感器的最大荧光强度和表型也有所不同。利用细胞传感器确定了Lactococcus lactis ATCC 11454乳链菌肽的产生,同时排除了一个能产其他抗菌化合物的菌株。【结论】构建的细胞分子传感器能特异性地响应乳链菌肽,并能简单快速地筛选乳链菌肽菌株。  相似文献   

3.
Lactic acid bacteria (LAB) have been used successfully to express a wide variety of recombinant proteins, ranging from flavor-active proteins to antibiotic peptides and oral vaccines. The nisin-controlled expression (NICE) system is the most prevalent of the systems for production of heterologous proteins in LAB. Previous optimization of the NICE system has revealed a strong limit on the concentration of the inducer nisin that can be tolerated by the culture of host cells. In this work, the nisin immunity gene, nisI, has been inserted into the recently reported pMSP3535H2 vector that contains the complete NICE system on a high-copy Escherichia coli-LAB shuttle vector. Fed-batch fermentation data show that Lactococcus lactis IL1403 cells transformed with the new vector, pMSP3535H3, tolerate a 5-fold increase in the concentration of the inducer nisin, and, at this elevated concentration, produce a 1.8-fold increased level of green fluorescent protein (GFP), a model recombinant protein. Therefore, the incorporation of nisI in the pMSP3535H3 NICE system described here unveils new ranges of induction parameters to be studied in the course of optimizing recombinant protein expression in LAB.  相似文献   

4.
A transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lactococcus lactis MG1363, Leuconostoc lactis NZ6091, and Lactobacillus helveticus CNRZ32. Typically, the beta-glucuronidase activity (used as a reporter in this study) remained below the detection limits under noninducing conditions and could be raised to high levels, by addition of subinhibitory amounts of nisin to the growth medium, while exhibiting a linear dose-response relationship. These results demonstrate that the nisin-inducible system can be functionally implemented in lactic acid bacteria other than Lactococcus lactis.  相似文献   

5.
The potential of lactic acid bacteria as live vehicles for the production and delivery of therapeutic molecules is being actively investigated today. For future applications it is essential to be able to establish dose-response curves for the targeted biological effect and thus to control the production of a heterologous biopeptide by a live lactobacillus. We therefore implemented in Lactobacillus plantarum NCIMB8826 the powerful nisin-controlled expression (NICE) system based on the autoregulatory properties of the bacteriocin nisin, which is produced by Lactococcus lactis. The original two-plasmid NICE system turned out to be poorly suited to L. plantarum. In order to obtain a stable and reproducible nisin dose-dependent synthesis of a reporter protein (beta-glucuronidase) or a model antigen (the C subunit of the tetanus toxin, TTFC), the lactococcal nisRK regulatory genes were integrated into the chromosome of L. plantarum NCIMB8826. Moreover, recombinant L. plantarum producing increasing amounts of TTFC was used to establish a dose-response curve after subcutaneous administration to mice. The induced serum immunoglobulin G response was correlated with the dose of antigen delivered by the live lactobacilli.  相似文献   

6.
A new food-grade cloning vector for lactic acid bacteria was constructed using the nisin immunity gene nisI as a selection marker. The food-grade plasmid, pLEB590, was constructed entirely of lactococcal DNA: the pSH71 replicon, the nisI gene, and the constitutive promoter P45 for nisI expression. Electroporation into Lactococcus lactis MG1614 with 60 international units (IU) nisin/ml selection yielded approximately 105 transformants/μg DNA. MG1614 carrying pLEB590 was shown to be able to grow in medium containing a maximum of 250 IU nisin/ml. Plasmid pLEB590 was succesfully transformed into an industrial L. lactis cheese starter carrying multiple cryptic plasmids. Suitability for molecular cloning was confirmed by cloning and expressing the proline iminopeptidase gene pepI from Lactobacillus helveticus in L. lactis and Lb. plantarum. These results show that the food-grade expression system reported in this paper has potential for expression of foreign genes in lactic acid bacteria in order to construct improved starter bacteria for food applications. Electronic Publication  相似文献   

7.
Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago—the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.  相似文献   

8.
食品级高效诱导表达系统-NICE系统   总被引:1,自引:0,他引:1  
乳酸菌NICE系统是在乳链菌肽诱导下由nisA启动子控制目的基因表达的,含nisR和nisK的两组分调节系统的高效诱导表达系统。由于NICE系统的诱导剂、宿主菌和载体都是食品级的,其应用前景十分广阔。  相似文献   

9.
10.
The Nisin-controlled gene expression (NICE) system, which was discovered in Lactococcus lactis, was adapted to Lactobacillus reuteri by ligating nisA promoter (PnisA) and nisRK DNA fragments into the Escherichia coli-Lb. reuteri shuttle vector pSTE32. This chimerical plasmid (pNICE) was capable of expressing the heterologous amylase gene (amyL) under nisin induction. Optimization of induction factors for this Lb. reuteri/pNICE system, including nisin concentration (viz. 50 ng/ml), growth phase of culture at which nisin be added (viz. at the early exponential phase), and the best time for analyzing the gene product after inoculation (viz. at the 3rd h), allowed the amylase product to be expressed in high amounts, constituting up to about 18% of the total intracellular protein. Furthermore, the signal peptide (SP) of amyL gene (SPamyL) from Bacillus licheniformis was ligated to the downstream of PnisA in pNICE, upgrading this vector to a NICE-secretion (NIES) level, which was then designated pNIES (Sec+, secretion positive). Characterization of pNIES using an amyL-SPDelta gene (amyL gene lacking its SP) as a reporter revealed the 3rd h after induction as the secretion peak of this system, at which the secretion efficiency and the amount of alpha-amylase being secreted into the culture supernatant were estimated to reach 77.6% and 27.75 mg/l. Expression and secretion of AmyL products by pNIES in Lb. reuteri was also confirmed by SDS-PAGE and immunoblotting analysis.  相似文献   

11.
A specific method to identify nisin-producing strains was developed based on Nisin-Controlled gene Expression (NICE) vector pSec:Nuc. The plasmid pSec:Nuc was transformed into non-nisin-producing strain Lactococcus lactis NZ9000, a host commonly used for the NICE system. The generating strain L. lactis NZ9000/pSec:Nuc could sense extracellular inducer nisin and efficiently secrete a reporter protein Nuc, the staphylococcal nuclease (Nuc) into the medium. Instead of using purified nisin, the culture supernatants of nisin-producing strains were also used as inducers. Therefore, the NICE system could be used to identify nisin-producing strains. With this principle, 4 among 56 lactococci strains isolated from raw milk were identified as nisin producers. The results were further confirmed by polymerase chain reaction amplification with their genomic DNA as templates, and nucleotide sequencing revealed that three of them produced nisin A, and the others produced nisin Z. Those results made it possible to isolate and identify nisin-producing strains specifically and rapidly using NICE system.  相似文献   

12.

Background  

The nisin-controlled gene expression system NICE of Lactococcus lactis is one of the most widely used expression systems in Gram-positive bacteria. Despite its widespread use, no optimization of the culture conditions and nisin induction has been carried out to obtain maximum yields. As a model system induced production of lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus) produced by S. simulans biovar. Staphylolyticus, was used. Three main areas need optimization for maximum yields: cell density, nisin-controlled induction and protein production, and parameters specific for the target-protein.  相似文献   

13.
乳酸乳球菌食品级诱导表达系统的构建及异源蛋白的表达   总被引:2,自引:0,他引:2  
以α-aga基因为食品级选择标记构建了乳酸乳球菌食品级高效诱导细胞内和细胞壁锚定表达系统,并用这一表达系统表达了铜绿假单胞菌融合外膜蛋白基因OprF/H。首先以pRAF800和pNZ8048构建了含有α-aga、PnisA-MCS-TpepN和θ复制子的乳酸乳球菌食品级细胞内诱导表达载体pRNA48,再以pRNA48和pVE5524为出发载体构建了含有α-aga、PnisA-SPUsp45-nucA-CWAM6-t1t2和θ复制子的乳酸乳球菌细胞壁锚定诱导表达载体pRNV48。然后以食品级载体pRNA48和pRNV48为基础,构建了不含抗生素抗性选择标记的铜绿假单胞菌融合外膜蛋白基因的表达质粒pRNA48-OprF/H和pRNV48-OprF/H。利用nisin进行重组乳酸乳球菌菌株的诱导表达,通过SDS-PAGE和Western blot分析,检测到表达蛋白分别占细胞内可溶蛋白的9.6%和细胞壁锚定蛋白的9.8%,表达产物具有免疫原性,可与含OprF/H的乳球菌以及铜绿假单胞菌发生特异性的凝集反应。  相似文献   

14.
Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host’s proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ΔhtrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0556-2) contains supplementary material, which is available to authorized users.  相似文献   

15.
Fluorescent proteins are useful reporter molecules for a variety of biological systems. We present an alternative strategy for cloning reporter genes that are regulated by the nisin-controlled gene expression (NICE) system. Lactoccocus lactis was genetically engineered to express green fluorescent protein (GFP), mCherry or near-infrared fluorescent protein (iRFP). The reporter gene sequences were optimized to be expressed by L. lactis using inducible promoter pNis within the pNZ8048 vector. Expression of constructions that carry mCherry or GFP was observed by fluorescence microscopy 2 h after induction with nisin. Expression of iRFP was evaluated at 700 nm using an infrared scanner; cultures induced for 6 h showed greater iRFP expression than non-induced cultures or those expressing GFP. We demonstrated that L. lactis can express efficiently GFP, mCherry and iRFP fluorescent proteins using an inducible expression system. These strains will be useful for live cell imaging studies in vitro or for imaging studies in vivo in the case of iRFP.  相似文献   

16.
乳酸乳球菌作为黏膜免疫活载体疫苗传递抗原的研究进展   总被引:7,自引:2,他引:7  
乳酸菌是人和动物肠道内的常见细菌,被公认为安全级(generally recognized as safe,GRAS)微生物。近年来,对于乳酸菌作为宿主菌表达外源蛋白或抗原的研究取得了一定进展。乳酸乳球菌(Lactococcus lactis)是乳酸菌的代表菌种,以其生长迅速、易于操作等优点成为表达外源抗原,作为黏膜免疫活载体疫苗的理想菌株。随着对乳酸乳球菌基因工程的研究逐渐深入,已发展了一系列组成型和诱导型乳酸乳球菌表达系统以及蛋白定位系统。破伤风毒素片段C、布氏杆菌L7/L12蛋白等多种病原微生物抗原已成功在乳酸乳球菌中表达,并已证明部分重组乳酸乳球菌作为黏膜免疫疫苗可以同时刺激局部黏膜免疫应答和系统免疫应答。目前,如何使活载体乳酸乳球菌以最佳方式向黏膜免疫系统提呈抗原继而诱导有效免疫反应是该领域的研究热点,也是巨大挑战。实现外源抗原在乳酸乳球菌中的准确定位及与细胞因子的共表达是未来研究的重要方向之一。乳酸乳球菌作为黏膜免疫活载体疫苗传递外源抗原具有广阔的应用前景。  相似文献   

17.
Aggregation substance proteins encoded by the sex pheromone plasmid family of Enterococcus faecalis have been shown previously to contribute to the formation of a stable mating complex between donor and recipient cells and have been implicated in the virulence of this increasingly important nosocomial pathogen. In an effort to characterize the protein further, prgB, the gene encoding the aggregation substance Asc10 on pCF10, was cloned in a vector containing the nisin-inducible nisA promoter and its two-component regulatory system. Expression of aggregation substance after nisin addition to cultures of E. faecalis and the heterologous bacteria Lactococcus lactis and Streptococcus gordonii was demonstrated. Electron microscopy revealed that Asc10 was presented on the cell surfaces of E. faecalis and L. lactis but not on that of S. gordonii. The protein was also found in the cell culture supernatants of all three species. Characterization of Asc10 on the cell surfaces of E. faecalis and L. lactis revealed a significant increase in cell surface hydrophobicity upon expression of the protein. Heterologous expression of Asc10 on L. lactis also allowed the recognition of its binding ligand (EBS) on the enterococcal cell surface, as indicated by increased transfer of a conjugative transposon. We also found that adhesion of Asc10-expressing bacterial cells to fibrin was elevated, consistent with a role for the protein in the pathogenesis of enterococcal endocarditis. The data demonstrate that Asc10 expressed under the control of the nisA promoter in heterologous species will be an useful tool in the detailed characterization of this important enterococcal conjugation protein and virulence factor.  相似文献   

18.
19.
The lantibiotic nisin is produced by several strains of Lactococcus lactis. The complete gene cluster for nisin biosynthesis in L. lactis 6F3 comprises 15 kb of DNA. As described previously, the structural gene nisA is followed by the genes nisB, nisT, nisC, nisI, nisP, nisR, and nisK. Further analysis revealed three additional open reading frames, nisF, nisE, and nisG, adjacent to nisK. Approximately 1 kb downstream of the nisG gene, three open reading frames in the opposite orientation have been identified. One of the reading frames, sacR, belongs to the sucrose operon, indicating that all genes belonging to the nisin gene cluster of L. lactis 6F3 have now been identified. Proteins NisF and NisE show strong homology to members of the family of ATP-binding cassette (ABC) transporters, and nisG encodes a hydrophobic protein which might act similarly to the immunity proteins described for several colicins. Gene disruption mutants carrying mutations in the genes nisF, nisE, and nisG were still able to produce nisin. However, in comparison with the wild-type strain, these mutants were more sensitive to nisin. This indicates that besides nisI the newly identified genes are also involved in immunity to nisin. The NisF-NisE ABC transporter is homologous to an ABC transporter of Bacillus subtilis and the MbcF-MbcE transporter of Escherichia coli, which are involved in immunity to subtilin and microcin B17, respectively.  相似文献   

20.
The use of Gram-positive bacteria for heterologous protein production proves to be a useful choice due to easy protein secretion and purification. The lactic acid bacterium Lactococcus lactis emerges as an attractive alternative to the Gram-positive model Bacillus subtilis. Here, we review recent work on the expression and secretion systems available for heterologous protein secretion in L. lactis, including promoters, signal peptides and mutant host strains known to overcome some bottlenecks of the process. Among the tools developed in our laboratory, inactivation of HtrA, the unique housekeeping protease at the cell surface, or complementation of the Sec machinery with B. subtilis SecDF accessory protein each result in the increase in heterologous protein yield. Furthermore, our lactococcal expression/secretion system, using both P(Zn)zitR, an expression cassette tightly controlled by environmental zinc, and a consensus signal peptide, SP(Exp4), allows efficient production and secretion of the staphylococcal nuclease, as evidenced by protein yields (protein amount/biomass) comparable to those obtained using NICE or P170 expression systems under similar laboratory conditions. Finally, the toolbox we are developing should contribute to enlarge the use of L. lactis as a protein cell factory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号