首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kelp Laminaria hyperborea is host for a rich fauna of mobile invertebrates. Dispersal patterns of these animals may be crucial for their availability to visual predators like fish, which are known to search for food in these productive habitats. Diurnal, horizontal and vertical dispersal within and out of the kelp forest were studied by analysing colonization of artificial substrata placed among kelps. The species composition of the fauna was different on three parts of the kelp: lamina, stipes (with epiphytes) and holdfast. The artificial substrata were colonized mainly by species associated with kelp. More species and individuals colonized the artificial substrata at night than during the day. The most abundant faunal groups on the kelps and the artificial substrata were amphipods and gastropods. Both groups dispersed at a significantly higher rate at night than during the day. Rapid horizontal dispersal out of the kelp forest was found. The artificial substrata were also colonized quickly by kelp fauna at all vertical levels inside and above the kelp forest. However, species associated with the kelp holdfast tended to disperse close to the bottom, while stipe-associated fauna moved through all parts of the kelp forest and even above the canopy layer. A high dispersal rate appears common amongst the mobile species living on kelp and seems to be advantageous, despite the risks involved in emigrating from the habitat and being exposed to predators. Higher activity at night may reduce availability to predators.  相似文献   

2.
Lessonia nigrescens and L. trabeculata are economically important canopy-forming kelps in Chile. Experimental harvesting of stipes above the first dichotomy reduces stipe movement and inter-stipe friction, allowing the development of a heavy epiphytic load and increased grazing. Complete stipe removal leads to holdfast death as neither species is able to simultaneously regenerate all stipes. The invertebrate fauna inside the holdfast does not respond to upper canopy changes, but mortality does occur in partial or complete plant removals. Kelp removal also affects inter-plant distances, results in increased access of grazers to the outside and inside of kelp holdfasts, reduces recruitment of other algal species, and modifies the morphology of L. trabeculata such that the plants become more susceptible to removal by water movement.  相似文献   

3.
Kelp forests are highly productive and species‐rich benthic ecosystems in temperate regions that provide biogenic habitat for numerous associated species. Diverse epifaunal communities inhabit kelp sporophytes and are subject to variations in the physical environment and to changes experienced by the kelp habitat itself. We assessed seasonal variations in epifaunal invertebrate communities inhabiting giant kelps, Macrocystis pyrifera, and their effects on this seaweed. Six seasonal samplings were conducted over a year at an upwelling‐dominated site in northern‐central Chile where physical conditions are known to fluctuate temporally. More than 30 taxa were identified, among which peracarid crustaceans stood out in both diversity and abundance. Species richness and abundance differed among sporophyte sections (holdfast and fronds) and throughout the year. The frond community was dominated by two grazers (the amphipod Peramphithoe femorata and the isopod Amphoroidea typa), while suspension feeders, grazers, and omnivores (the amphipod Aora typica, the isopod Limnoria quadripunctata, and polychaetes) dominated the holdfasts. Abundances of the dominant species fluctuated throughout the year but patterns of variation differed among species. The most abundant grazer (P. femorata) had highest densities in summer, while the less abundant grazer (A. typa) reached its peak densities in winter. Interestingly, the area of kelp damaged by grazers was highest in autumn and early winter, suggesting that grazing impacts accumulate during periods of low kelp growth, which can thus be considered as ‘vestiges of herbivory past.’ Among the factors determining the observed seasonal patterns, strong variability of environmental conditions, reproductive cycles of associated fauna, and predation by fishes vary in importance. Our results suggest that during spring and early summer, bottom‐up processes shape the community structure of organisms inhabiting large perennial seaweeds, whereas during late summer and autumn, top‐down processes are more important.  相似文献   

4.
The kelp Laminaria hyperborea forms large forests and houses a numerous and diverse fauna, especially in the kelp holdfast and stipe epiphytes. Kelp harvesting creates cleared areas and fragmentizes the kelp forest. We investigated the dispersal ability of kelp fauna to cleared, harvested areas by studying their colonization pattern to artificial substrata (kelp mimics) exposed for a short (3 days) and longer time period (35 days) at different sites within the kelp forest (one site) and at a cleared area (two sites). Most of the kelp fauna (111 species) showed a rapid dispersal and colonized the artificial substrata within the cleared area. The similarity of the faunal community in the mimics with the natural kelp holdfast community increased with the length of the exposure period. During the experiments, 87% of the mobile species in the kelp plants were found in the kelp mimics, indicating good dispersal for slow-moving animals like gastropods, polychaetes and tube-building crustaceans. Relating the frequency of the different faunal groups in the untrawled kelp forest to their frequency in the kelp mimics, showed gastropods, amphipods and decapods to have relatively high dispersal rates, whereas isopods, bivalves, polychaetes and tanaids showed a lower dispersal rate than expected. Amphipods dispersed as juveniles and adults. No significant differences were found between the faunal composition and number of species in the mimics placed inside the kelp forest and in the cleared area. Remaining holdfasts and pebbles were identified as refuges/alternative habitats in the harvested area, and may together with the nearest kelp vegetation, serve as sources for colonization to new substrata. The high dispersal ability of most of the kelp fauna provides maintenance of the faunal composition of disturbed habitats and ensures colonization of recovering algal habitats regardless of reproduction strategy.  相似文献   

5.
The mobile fauna associated with two sympatric kelp species with different holdfast morphology (Saccorhiza polyschides and Laminaria hyperborea) was compared to test for differences in the assemblage structure of holdfast-associated mobile epifauna. A total of 24,140 epifaunal individuals were counted from 30 holdfasts of each kelp species. Overall epifaunal abundances exceeded faunal abundances previously reported from holdfasts of other kelps. Three taxonomic groups, Amphipoda, Mollusca, and Polychaeta, accounted for ca. 85% of all individuals. Total abundances increased with the amount of habitat available, quantified either as the volume or the area provided by the holdfasts. The multivariate structure of the epifaunal assemblage did not differ between holdfasts of the two kelp species. However, epifaunal assemblages responded differentially to the habitat attributes provided by each type of kelp holdfast: multivariate variation in the assemblage structure of epifauna was mostly explained by holdfast area and volume for L. hyperborea, and by the surface-to-volume ratio for S. polyschides holdfasts. Therefore, the physical attributes of biogenic habitats, here kelp holdfasts that better predict patterns in the assemblage structure of associated fauna can differ according to their different physical morphology, even though the overall assemblage structure of associated fauna was similar.  相似文献   

6.
Synopsis We conducted underwater fish assemblage surveys, benthic quinaldine sampling, and ichthyoplankton collections over high and low relief reefs at Palos Verdes Point, California from 1974 through 1981. Seventy-three species (adults and larvae) were collected or observed at Palos Verdes. Of the 24 most abundant species, 8 showed significant abundance trends correlated with changes in sea surface temperatures; four increasing, and four decreasing. Two taxa occurred predominantly in the kelp canopy, while seven others were distributed at least 20% of the time between the canopy and the bottom. There was little significant change in the Palos Verdes benthic fish assemblage with development of the kelp bed. Only the kelp bass, Paralabrax clathratus, showed a significant increase in abundance that correlated with the kelp bed formation. Similarly, we did not note an increase in juvenile fish during this period. In general, we suggest that the presence or absence of kelp has little effect on the abundance of most fish species in a high relief environment. Analysis of our data and that of other studies indicate that kelp bed fish assemblages within the Southern California Bight vary in a south-north direction. The Palos Verdes Point kelp bed appears to be more productive than those nearer the limit of the Bight, but was consistently lower in both fish abundance and diversity then the nearby breakwater at King Harbor. This difference has been maintained even though changes in the species structure at King Harbor has altered sufficiently since 1976 for the two formerly distinct assemblages to be significantly concordant.  相似文献   

7.
Macrocystis pyrifera (L.) C. Agardh is a characteristic macroalga in the Magellan region covering almost 30% of the shallow coastal waters. The focus of this study was to analyse the spatial and seasonal patterns in macrofauna communities associated to the holdfasts of Macrocystis pyrifera at two study sites in the Straits of Magellan, South Chile. In total, 114 species from 10 major taxa were isolated from the holdfasts. MDS clearly separated the holdfast fauna collected in different seasons, with autumn and winter collections being richer in terms of species richness and abundance as compared to the spring and summer situation. MDS also clearly separated the holdfast associated faunas of the two study sites, Bahía Laredo and Fuerte Bulnes. The community structure and species composition of the associated macro-invertebrates and vertebrates appeared rather heterogeneous, probably due to the extremely heterogeneous environmental conditions along the entire coastline of the Subantarctic Magellan region.  相似文献   

8.
The macrozooplankton and Benthic Boundary Layer (BBL) macrofauna over a coarse sand and pebble community in the Bay of Saint-Brieuc (western English Channel) were sampled with a WP2 zooplankton net and with a modified MACER-GIROQ suprabenthic sledge, respectively, from February 1994 to November 1995. One hundred and sixty-four species were collected in 44 suprabenthic sledge hauls and 19 taxa in 30 zooplankton net hauls. In the water column, appendicularians and cnidarians dominated, while, in the BBL, holoplanktonic amphipods, chaetognaths, amphipods and mysids dominated the fauna; among them Apherusa spp., Sagitta setosa Muller, Anchialina agilis (Sars), Sirella clausii Sars and Eusirus longipes Boeck were the dominant species. The density and biomass of the BBL macrozooplankton were lower than those of the macrozooplankton in the water column. The density and biomass of suprabenthos remained a low throughout the year. In the water column, density and biomass of macrozooplankton showed a maximum in spring and remained low from autumn to winter; conversely, in the BBL, the density and biomass of both macrozooplankton and suprabenthos were higher from summer to autumn. The change in abundance of both BBL and pelagic taxa was seasonal. Some species were primarily sampled in the water column (appendicularians, cladocerans and cnidarians), while others were preferentially found at the BBL (suprabenthic species, holoplanktonic amphipods and cephalopods). A third group was collected throughout the water column (chaetognaths and fish larvae).   相似文献   

9.
10.
The ant fauna of oak forest canopies in Northern Bavaria was studied by canopy fogging on 45 trees in August 2000 and May 2001. The study focused on a comparison of several different forestry management practices resulting in several types of canopy cover. Forests surveyed were: (1) high forest (high canopy cover), (2) coppice with standards (low canopy cover), (3) forest pasture with mostly solitary trees (very low canopy cover) and (4) transitional forest from former coppice with standards to high forest (approaching high canopy cover). This comprised a full gradient of canopy coverage. On the 45 oak trees sampled, a total of 17 ant species were found. Species composition was dependent on the different forestry management practices. The total number of species and the number of species listed in the Red Data Books of both Germany and Bavaria were much higher in the forest pasture and the coppice with standards, as compared to the high forest. The transitional forest was at an intermediate level. The highest number of ant species was found in the forest pasture. This can be explained by the occurrence of species of open habitats and thermophilous species. In the coppice with standards, forest dwelling and arboricolous species dominated, whereas the high forest showed much lower frequencies of arboricolous species like Temnothorax corticalis, Dolichoderus quadripunctatus and Temnothorax affinis. A multivariate analysis revealed that canopy cover (measured as “shade”, in percentage intervals of canopy cover) was the best parameter for explaining species distribution and dataset variation, and to a lesser extent the amount of dead wood, canopy and trunk diameter. Thus ant fauna composition was mostly driven by structural differences associated to the different forestry management practices. Many ant species clearly preferred the more open and light forest stands of the coppice with standards as compared to the dense and shady high forest.  相似文献   

11.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

12.
Silvicultural practices are traditionally aimed at increasing forest profits; however, recent approaches to forest conservation have broadened to include nature-based silviculture for regenerating forests. In southern Ontario (Canada), originally dominated by deciduous forests, conifer plantations were established on abandoned agricultural sites. Currently, there is an increasing interest to convert these conifer stands to a state that mimics the original deciduous forest. We investigated arthropod abundance, species richness of carabid beetles, and abundance of arthropod assemblages (trophic and prey groups) under five silvicultural treatments conducted to regenerate deciduous forests (the natural forest type) from the old conifer plantations. The treatments included: (1) uniform canopy removal; (2) uniform canopy removal and understory removal; (3) group canopy removal; (4) group canopy removal and understory removal; and (5) untreated control plots (relatively pure red pine). Insects were sampled annually using sweepnets and pitfall traps. Results revealed treatment effects on the abundance of Coleoptera, Heteroptera, herbivores, and small arthropods (<3 mm) caught in sweepnet samples, where plots subjected to group shelterwood removal and understory removal supported higher abundances than the control plots. There was no treatment effect on the abundance of other arthropod groups or on the species richness and abundance of carabid beetles. The silvicultural treatments used to encourage natural regeneration did not seem to affect arthropod food availability for insectivorous vertebrates. Thus, the type of silvicultural strategy used to convert pine plantations to a stage that mimics the natural deciduous forests had little overall impact on arthropods.  相似文献   

13.
The importance of termites as decomposers in tropical forests has long been recognized. Studies on the richness and diversity of termite species and their ecological function have flourished in more recent times, but these have been mostly conducted in a thin stratum within a standing man’s reach. Our aims were to evaluate the specific richness and composition of the termite assemblage in the canopy of a tropical rainforest and to determine its originality with respect to the sympatric ground-level fauna. We conducted systematic searches for canopy termites, together with conventional sampling of the sympatric ground-level fauna, in the San Lorenzo forest, Panama. We hypothesized that (1) the canopy accommodates two categories of wood-feeding termites (long-distance foragers and small-colony “one-piece” species) and possibly soil-feeders in suspended soil-like habitats; (2) due to the abundance of soil-feeders, the overall diversity of the ground fauna is higher than that of the canopy; (3) differences in microclimate and resource accessibility favour vertical stratification among wood-feeders. Sixty-three canopy samples yielded ten species of termites, all wood-feeders. Five of these were not found at ground level, although a total of 243 ground samples were collected, representing 29 species. In addition to long-distance foragers (Microcerotermes and Nasutitermes spp.) and small-colony termites (mostly Kalotermitidae), the canopy fauna included Termes hispaniolae, a wood-feeding Termitidae from an allegedly soil-feeding genus, living in large dead branches. Soil-feeders were absent from the canopy, probably because large epiphytes were scarce. As predicted, the ground fauna was much richer than that of the canopy, but the species richness of both habitats was similar when only wood-feeders were considered. Vertical stratification was strongly marked among wood-feeders, as all common species, apart from the arboreal-nesting Microcerotermes arboreus, could unequivocally be assigned to either a ground or a canopy group. The canopy, therefore, contributes significantly to the total species richness of the termite assemblage, and the diversity, abundance and ecological importance of canopy termites in tropical rainforests may be higher than previously recognized.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

14.
To investigate seasonal changes in the taxon richness and abundance of mobile invertebrates inhabiting holdfasts of the warm temperate annual kelp Ecklonia radicosa, five holdfasts were collected monthly at the central Pacific coast of Japan from April to November 2014. During the study period, there was little variation in holdfast height and diameter, which ranged from 5.9 to 8.5 cm and from 7.1 to 10.8 cm, respectively. In total 7087 animals were collected from 40 holdfasts (177.2 individuals inds./holdfast, on average). The number of mobile invertebrates gradually increased from May (15 ± 9.9 inds./holdfast) to August (346 ± 152.5 inds./holdfast), with over 300 inds./holdfast until October before rapidly decreasing in November (110 ± 85.6 inds./holdfast). Similarly, taxon richness increased gradually from April (4.3 ± 1.0 taxa/holdfast) to August (11.0 ± 3.7 taxa/holdfast), and decreased in November (8.6 ± 2.3 taxa/holdfast). Interestingly, hundreds of mobile invertebrates inhabited holdfasts of kelp plants that had shed their blade in October and November. Taxon composition from August to October and the number of invertebrates from July to November were comparable to data previously reported for perennial kelps. In this study, the importance of annual Ecklonian species as biogenic habitats was demonstrated for the first time.  相似文献   

15.
Disturbance of competitive‐dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad‐scale canopy loss and local scale reef topography on structuring the kelp‐dominated macroalgal forests in Western Australia. Eighteen 314 m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34 month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22 months. By 34 months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum‐dominated, kelp‐dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp‐dominated reefs.  相似文献   

16.
Giant knotweeds (Reynoutria spp.) are highly productive and aggressive invaders in riparian wetlands of Europe and North America. We sampled ground-dwelling beetles by pitfall traps from six sites comparing monotypic Reynoutria stands with the invaded native Urtica-dominated stands. Three sites were located in a semi-natural softwood forest and three sites were on a ruderal embankment. The analyses are based on a total of 13,244 individuals from 218 species. Location and site significantly influenced beetle assemblages. Moreover, there were pronounced differences between vegetation stands. The monotypic Reynoutria stands exhibited lower beetle abundance, species richness and rarefaction diversity irrespective of location. However, the negative effect on species richness, abundance and assemblage similarities were stronger on the transformed ruderal embankment than in the semi-natural softwood forest. Reynoutria invasion seems to influence microclimatic conditions. We found a higher abundance of silvicolous and a lower abundance of xerophilous ground beetles in the Reyountria stands than in the Urtica-dominated stands. Feeding guilds reacted differently to Reynoutria invasion that reduced the abundance of predators and herbivores but enhanced that of detritivores. Detritivores assumingly profit from the perennial presence of the large quantities of Reynoutria litter. We conclude that highly productive invaders pauperise the arthropod fauna and alter link strengths in trophic cascades shifting primary producer-based food webs to detritus-based food webs.  相似文献   

17.
Forest edges created by scattered-patch clear-cutting have become common in tropical montane cloud forests in the highlands of Chiapas, Mexico. It was hypothesised that forest edges may influence regeneration of oak species, which are canopy dominants in these forests, by affecting the activities of small mammal species. Acorns of different oak species varying in germination timing were offered to predators and/or dispersers at different positions along replicated forest edges during 2 consecutive years. We investigated the effects of (1) edge type (hard and soft), (2) distance from the edge (0, 15, 30, 45 and 60 m inside forest fragments) and (3) oak species, on the rate of acorn removal mainly by small mammals. During a non-masting year, acorn removal was affected by the interaction of edge type and distance from the edge (P<0.05), with acorn removal being highest near hard edges compared to adjacent forest interiors. As predicted, acorn removal was greater along soft (100%) than along hard edges (82%), but this pattern was recorded only during the non-masting year. This study partly supports previous studies of rodents preferentially consuming acorns with early germination rather than acorns exhibiting dormancy, however these patterns may change with variation in acorn abundance. These results suggest that patch clear-cutting affects regeneration processes within forest fragments by influencing the activities of small mammals, but the nature of this effect also depends on acorn abundance and the characteristics of the forest edge created.  相似文献   

18.
19.
采用郁闭度控制方法,形成马尾松人工林郁闭度梯度(0.5,0.6,0.7,0.8,0.9)试验样地,研究不同郁闭度下土壤动物群落特征。运用手捡法、Tullgren法和Baermann法进行土壤动物群落调查。结果显示,1)共捕获土壤动物8 860只,隶属于4门11纲25目111科,其中大型土壤动物589只,以蜚蠊、疣和康叭为优势类群;中小型土壤动物8271只,以等节和丽甲螨为优势类群。2)大型土壤动物以杂食性为主,杂食性在0.9郁闭度显著增加,捕食性显著减少;中小型土壤动物以菌食和腐食性为主,腐食性土壤动物随郁闭度增大逐渐增加,菌食性逐渐减少。中小型捕食性土壤动物在郁闭度0.5—0.7显著增加,0.7—0.9无显著变化。3)大型土壤动物仅5—10 cm土层类群数在0.9郁闭度显著增加;中小型土壤动物总个体数及枯落物层个体数、5—10 cm土层类群数显著增加(0.5—0.7)后减少(0.7—0.9);中小型土壤动物总类群数在郁闭度0.5—0.6显著增加,枯落层类群数在郁闭度0.5—0.8显著增加,0.8—0.9显著减少。4)大型、中小型土壤动物多样性在土层中差异显著。中小型土壤动物Simpson优势度指数随郁闭度增大而减小,Shannon-Wiener多样性指数、Pielou均匀性指数则显著增大,Margalef丰富度指数先显著增高(0.5—0.6)后趋于平稳(0.6—0.9);大型土壤动物Jaccard相似性指数低于中小型。5)CCA分析表明,不同类群土壤动物对环境因子响应不同,郁闭度、含水量、有机质及全P对土壤动物类群影响显著。研究表明,0.7郁闭度马尾松人工林下土壤动物优势度、丰富度适中,林下植被恢复情况较好,该郁闭度可能更有利于土壤动物多样性和群落稳定性。  相似文献   

20.
The importance of a particular habitat to nearshore fishes can be best assessed by both diurnal and nocturnal sampling. To determine diel differences in fish assemblages in nearshore eelgrass and understory kelp habitats, fishes were sampled diurnally and nocturnally at six locations in western Prince William Sound, Alaska, in summer 2007. Abundance of fish between day and night were similar, but species composition and mean size of some fish changed. Species richness and species diversity were similar in eelgrass during the day and night, whereas in kelp, species richness and species diversity were greater at night than during the day. In eelgrass, saffron cod (Eleginus gracilis) was the most abundant species during the day and night. In kelp, the most abundant species were Pacific herring (Clupea pallasii) during the day and saffron cod at night. Diel differences in fish size varied by species and habitat. Mean length of saffron cod was similar between day and night in eelgrass but was greatest during the day in kelp. Pacific herring were larger at night than during the day in kelp. Diel sampling is important to identity nearshore habitats essential to fish and help manage fish stocks at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号