首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ex-FABP, extracellular fatty acid binding protein, is a 21 kDa lipocalin expressed in hypertrophic cartilage, muscle and heart during chick embryo development and in granulocytes. Ex-FABP synthesis was increased in chondrocyte and myoblast cultures by inflammatory agents (LPS; IL6) and repressed by antiinflammatory agents. Expression of Ex-FABP and specific gelatinases is paralleled in hypertrophic cartilage; LPS specifically induced high molecular weight gelatinase ( > 200 kDa). LPS-treated hypertrophic chondrocytes showed increased chemotactic activity for endothelial cells paralleled by increased expression of transferrin. A high amount of Ex-FABP was expressed in adult pathological cartilage both in dyschondroplastic and osteoarthritic chickens. Controls were negative. Ex-FABP could represent a stress protein physiologically expressed in tissues where active remodelling is taking place during development and in tissues characterized by an acute phase response due to pathological conditions. We also suggest that during endochondral bone formation other responses characteristic of a local inflammatory status, such as gelatinase production and angiogenic factor secretion, are "physiologically" activated.  相似文献   

3.
4.
Extracellular fatty acid binding protein (Ex-FABP) is a 21 kDa lipocalin specifically binding fatty acids, expressed during chicken embryo development in hypertrophic cartilage, in muscle fibers and in blood granulocytes. In chondrocyte and myoblast cultures Ex-FABP expression is increased by inflammatory agents and repressed by anti-inflammatory agents. In adult cartilage Ex-FABP is expressed only in pathological conditions such as in dyschondroplastic and osteoarthritic chickens. The possible mammalian counterpart is the Neu-related lipocalin (NRL), a lipocalin overexpressed in rat mammary cancer; NRL is homologous to the human neutrophil gelatinase associated lipocalin (NGAL) expressed in granulocytes and in epithelial cells in inflammation and malignancy and to the Sip24 (super-inducible protein 24), an acute phase lipocalin expressed in mouse after turpentine injection. Immunolocalization and in situ hybridization showed that NRL/NGAL is expressed in hypertrophic cartilage, in forming skeletal muscle fibers and in developing heart. In adult cartilage NRL/NGAL was expressed in articular cartilage from osteoarthritic patients and in chondrosarcoma. Moreover, NRL was induced in chondrocyte and myoblast cultures by an inflammatory agent. We propose that these lipocalins (Ex-FABP, NRL/NGAL, Sip24) represent stress proteins physiologically expressed in tissues where active remodeling is taking place during development and also present in tissues characterized by an acute phase response due to pathological conditions.  相似文献   

5.
Extracellular Fatty Acid Binding Protein (Ex-FABP) is a 21 kDa lipocalin, expressed during chicken embryo development in hypertrophic cartilage, in muscle fibres and in blood granulocyte. The protein selectively binds with high affinity fatty acids, preferably long chain unsaturated fatty acids in chondrocyte and myoblast cultures Ex-FABP expression is increased by inflammatory-agents and repressed by anti-inflammatory-agents. In adult cartilage, Ex-FABP is expressed only in pathological conditions such as in dyschondroplastic and osteoarthritic chicken cartilage. We propose that lipocalin Ex-FABP represents a stress protein physiologically expressed in tissues where active remodelling is taking place during development and also present in tissues characterized by a stress response due to pathological conditions.  相似文献   

6.
Galline Ex-FABP was identified as another candidate antibacterial, catecholate siderophore binding lipocalin (siderocalin) based on structural parallels with the family archetype, mammalian Siderocalin. Binding assays show that Ex-FABP retains iron in a siderophore-dependent manner in both hypertrophic and dedifferentiated chondrocytes, where Ex-FABP expression is induced after treatment with proinflammatory agents, and specifically binds ferric complexes of enterobactin, parabactin, bacillibactin and, unexpectedly, monoglucosylated enterobactin, which does not bind to Siderocalin. Growth arrest assays functionally confirm the bacteriostatic effect of Ex-FABP in?vitro under iron-limiting conditions. The 1.8?? crystal structure of Ex-FABP explains the expanded specificity, but also surprisingly reveals an extended, multi-chambered cavity extending through the protein and encompassing two separate ligand specificities, one for bacterial siderophores (as in Siderocalin) at one end and one specifically binding copurified lysophosphatidic acid, a potent cell signaling molecule, at the other end, suggesting Ex-FABP employs dual functionalities to explain its diverse endogenous activities.  相似文献   

7.
Ex-FABP, an extracellular fatty acid binding lipocalin, is physiologically expressed by differentiating chicken chondrocytes and myoblasts. Its expression is enhanced after cell treatment with inflammatory stimuli and repressed by anti-inflammatory agents, behaving as an acute phase protein. Chicken liver fragments in culture show enhanced protein expression after bacterial endotoxin treatment. To investigate the biological role of Ex-FABP, we stably transfected proliferating chondrocytes with an expression vector carrying antisense oriented Ex-FABP cDNA. We observed a dramatic loss of cell viability and a strong inhibition of cell proliferation and differentiation. When chondrocytes were transfected with the antisense oriented Ex-FABP cDNA we observed that Ex-FABP down-modulation increased apoptotic cell number. Myoblasts transfected with the same expression vector showed extensive cell death and impaired myotube formation. We suggest that Ex-FABP acts as a constitutive survival protein and that its expression and activation are fundamental to protect chondrocytes from cell death.  相似文献   

8.
9.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

10.
The control point by which chondrocytes take the decision between the cartilage differentiation program or the joint formation program is unknown. Here, we have investigated the effect of alpha5beta1 integrin inhibitors and bone morphogenetic protein (BMP) on joint formation. Blocking of alpha5beta1 integrin by specific antibodies or RGD peptide (arginine-glycine-aspartic acid) induced inhibition of pre-hypertrophic chondrocyte differentiation and ectopic joint formation between proliferating chondrocytes and hypertrophic chondrocytes. Ectopic joint expressed Wnt14, Gdf5, chordin, autotaxin, type I collagen and CD44, while expression of Indian hedgehog and type II collagen was downregulated in cartilage. Expression of these interzone markers confirmed that the new structure is a new joint being formed. In the presence of BMP7, inhibition of alpha5beta1 integrin function still induced the formation of the ectopic joint between proliferating chondrocytes and hypertrophic chondrocytes. By contrast, misexpression of alpha5beta1 integrin resulted in fusion of joints and formation of pre-hypertrophic chondrocytes. These facts indicate that the decision of which cell fate to make pre-joint or pre-hypertrophic is made on the basis of the presence or absence of alpha5beta1 integrin on chondrocytes.  相似文献   

11.
12.
13.
14.
15.
Endochondral ossification is a complex process involving the formation of cartilage and the subsequent replacement by mineralized bone. Although the proliferation and differentiation of chondrocytes are strictly regulated, the molecular mechanisms involved are not completely understood. Here, we show that a divergent-type homeobox gene, hematopoietically expressed homeobox gene (HEX), is expressed in mouse chondrogenic cell line ATDC5. The expression of Hex protein drastically increased during differentiation. The chondrogenic differentiation-enhanced expression of Hex protein was also observed in chondrocytes in the tibia of embryonic day 15.5 (E15.5) mouse embryos. The localization of Hex protein in the chondrocytes of the tibia changed in association with maturation; namely, there was Hex protein in the cytoplasm near the endoplasmic reticulum (ER) in resting chondrocytes, which moved to the nucleus in prehypertrophic chondrocytes, and thereafter entered the ER in hypertrophic chondrocytes. These results suggest Hex expression and subcellular localization are associated with chondrocyte maturation.  相似文献   

16.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

17.
Tibial dyschondroplasia (TD) appears to involve a failure of the growth plate chondrocytes within growing long bones to differentiate fully to the hypertrophic stage, resulting in a mass of prehypertrophic chondrocytes which form the avascular TD lesion. Many biochemical and molecular markers of chondrocyte hypertrophy are absent from the lesion, or show reduced expression, but the cause of the disorder remains to be identified. As differentiation to the hypertrophic state is impaired in TD, we hypothesised that chondrocyte genes that are differentially expressed in the growth plate should show altered expression in TD. Using differential display, four genes, B-cadherin, EF2, HT7 and Ex-FABP were cloned from chondrocytes stimulated to differentiate to the hypertrophic stage in vitro, and their differential expression confirmed in vivo. Using semi-quantitative RT-PCR, the expression patterns of these genes were compared in chondrocytes from normal and TD growth plates. Surprisingly, none of these genes showed the pattern of expression that might be expected in TD lesion chondrocytes, and two of them, B-cadherin and Ex-FABP, were upregulated in the lesion. This indicates that the TD phenotype does not merely reflect the absence of hypertrophic marker genes, but may be influenced by more complex developmental mechanisms/defects than previously thought.  相似文献   

18.
19.
The presence of vitamin-D-dependent calcium-binding protein (CaBP-9K) in tibial growth-plate cartilage was immunohistochemically demonstrated using a specific antibody to rat duodenal CaBP-9K. The protein was found to be mainly localized in the cytoplasm of maturing chondrocytes. In hypertrophic chondrocytes, CaBP-9K concentrations decreased, and the protein was found in the cytoplasmic processes. No CaBP-specific immunoreactivity was seen in the hypertrophic chondrocytes of the lower calcified hypertrophic zone; in contrast, the protein was found in the extracellular lateral edges of longitudinal septa, i.e. where matrix vesicles are preferentially localized and where cartilage mineralization is initiated. These findings suggest that vitamin D has a direct function in this tissue. It also seems likely that CaBP-9K is an indicator of chondrocyte maturation, and that it is involved in the matrix vesicle-associated process of cartilage calcification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号