首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathepsin M: a lysosomal proteinase with aldolase-inactivating activity   总被引:3,自引:0,他引:3  
A proteinase, designated cathepsin M, that catalyzes the limited modification and inactivation of fructose 1,6-bisphosphate aldolase (EC 4.1.2.13) and fructose 1,6-bisphosphatase (EC 3.1.3.11) has been partially purified from rabbit liver. On the basis of its molecular size (Mr = 30,000), activation by sulfhydryl compounds and inhibition by leupeptin it has been characterized as a B-type cathepsin, but other properties distinguish it from cathepsins B, L, and H. Approximately 50% of the total cathepsin M activity is associated with membranes prepared from disrupted lysosomes; this fraction of the activity is also expressed by intact lysosomes. In the membrane-bound form the enzyme is active at neutral pH, but the soluble enzyme and the activity eluted from the membranes are maximally active at pH 5.0. Fasting increases the activity of cathepsin M; the increase is almost entirely in the membrane-bound fraction.  相似文献   

2.
Six types of nuclease activities were found to be concentrated in the large granule fraction isolated from rat liver homogenastes by differential centrifugation. Analysis by density equilibration shows that three nucleases are associated with mitochondria: an alkaline ribonulcease (pH optimum 8.8), an alkaline deoxyribonuclease (pH optimum 7.6) and an enzyme acting on polyriboadenylate (pH optimum 7.5). When the outer mitochondrial membrane is ruptured in hypotonic medium, the three mitochondrial nucleases are partially solubilized. Solubilization is however obtained by addition of KCL to the suspension medium. It is concluded that mitochondrial nucleases are localized in the intermembrane space but that an adsorption to the outer face of the inner mitochondrial membrane occurs in sucrose 0.25 M. The mitochondrial localization of alkaline ribonuclease, alkaline deoxyribonuclease and polyadenylate accounts for at least 80% of the activity of liver homogenate; nevertheless, an excess of these enzymes is present in the microsomal fraction. Although no definite conculusion can be reached for the significance of this observation, it is shown by density equilibration analysis that these nuclease are not associated either with ribosomes or with the membranes which are the major component of the microsomal fraction.  相似文献   

3.
An enzyme present in rat liver lysosomes catalyzes the conversion of neutral rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) to a form having maximum activity at pH 9.2. The converting enzyme is partly released when lysosomes are subjected to a single freeze-thaw cycle, but a significant fraction tends to remain with the lysosomal membrane fraction even after repeated freezing and thawing. After repeated freezing and thawing hexosaminidase and cathepsin D are also partly membrane-bound, but cathepsins A, B, and C are completely solubilized. The membrane-bound enzymes, unlike those in intact lysosomes, are not cryptic. The converting enzyme activity is inactivated by phenylmethanesulfonyl fluoride, and is almost completely inactive after exposure to iodoacetic acid or tosylamido-2-phenylethyl and N-α-tosyl lysyl chloromethyl ketones. Unlike cathepsin B, it is not inhibited by leupeptin. Converting enzyme is unstable above pH 6.5, and this property also serves to distinguish it from cathepsins B and D. The results suggest that the converting enzyme is not identical to any of the well-characterized cathepsins.  相似文献   

4.
Antiserum against mouse liver plasma membranes was used to investigate the properties and distribution of the surface membrane enzyme 5′ nucleotidase.The antiserum inhibited 5′ nucleotidase but had no effect on alkaline phosphodiesterase, nucleotide pyrophosphatase, or insulin-binding activity.5′ Nucleotidase was purified from mouse liver plasma membranes and the purified enzyme was shown to be inhibited by the antiserum. The membrane-bound and the purified enzyme were both inhibited in a noncompetitive manner.The reaction of the antiserum with 5′ nucleotidase activity of mouse liver plasma membrane “light” and “heavy” subfractions, and of rat liver and pig lymphocyte surface-membrane fractions was investigated. In each case the enzyme was inhibited by the antiserum.Since a protein must be partially exposed on the membrane surface in order to react with its antibody, the results are discussed in terms of the disposition of 5′ nucleotidase within the membrane.  相似文献   

5.
A fructokinase (EC 2.7.1.4) was obtained from pea (Pisum sativum L.) seeds. This enzyme, termed fructokinase (fraction IV), was specific for fructose as substrate and had little activity with glucose or mannose. Excess fructose inhibited the enzyme at the optimum pH (8.2) but not at pH 6.6. MgATP was inhibitory at pH 6.6. The apparent Michaelis-Menten constants at pH 8.2 were 0.057 mm for fructose and 0.10 mm for MgATP. Mg(2+) ions were essential for activity; Mn(2+) could partially replace Mg(2+). Fructokinase (fraction IV) had a requirement for K(+) ions which could be substantially replaced by Rb(+) or NH(4) (+) but not by Na(+). The enzyme was inhibited by MgADP. The possible significance of fructokinase (fraction IV) in plant carbohydrate metabolism is discussed.  相似文献   

6.
The conversion of proparathyroid hormone (proparathormone) to parathyroid hormone (parathormone) by subcellular fractions of the bovine parathyroid has been investigated. The identification of the conversion product as parathormone was established by its elution postion during ion exchange chromatography and gel filtration, and by partial amino acid sequence analysis of its NH2-terminal region. Total homogenates and derived subcellular fractions (600 X g pellet, 5,000 X g pellet, 20,000 X g pellet, 190,000 X g pellet, and 190,000 X g supernatant) all catalyzed the conversion of exogenous [3H]- or [14C]prohormone. Over 60% of the converting activity was in the particulate fractions; the 190,000 X g particulate fraction contained the highest specific converting activity. The converting activity appeared to be an integral component of the membranes since it could only be partially removed by extraction with Triton X-100. The production of parathormone by the particulate converting enzyme increased with time and the concentration of enzyme protein. The optimum pH range was between 7 and 9, and the enzyme was inactive below pH 6. Conversion by the particulate enzyme was inhibited by benzamidine or chloroquine, but not by pancreatic trypsin inhibitor, indicating its dissimilarity to trypsin. When a mixture of [14C]proparathormone and [3H]parathormone was used as substrate, the particulate enzyme did not metabolize the hormone despite over 70% conversion of the prohormone to hormone and other peptides. There was a close correlation between the subcellular distribution of converting activity and that of newly formed parathormone found in the membrane fraction. These data suggest that the particulate converting activity is that concerned with the formation of parathormone in vivo.  相似文献   

7.
An enzyme hydrolyzing flavin-adenine dinucleotide (FAD) to flavin mononucleotide and AMP was identified and purified from rat liver lysosomal (Tritosomal) membranes. The purified enzyme showed a single band on silver-stained denaturing gels with an apparent Mr 70,000. Periodate-Schiff staining after denaturing gel electrophoresis of whole membrane preparations revealed that this enzyme is one of the major glycoproteins in lysosomal membranes. FAD appeared to be the preferred substrate for the purified enzyme; equivalent concentrations of NAD or CoA were hydrolyzed at about one-half of the FAD rate. Negligible activity (less than or equal to 16%) was noted with ATP, TTP, ADP, AMP, FMN, pyrophosphate, or p-nitrophenylphosphate. The enzyme was inhibited by EDTA or dithiothreitol. It was stimulated by Zn, and was not affected by Ca or Mg ions, nor by p-chloromercuribenzoate. The pH optimum for FAD hydrolysis was 8.5-9 with an apparent Km of 0.125 mM. Antibodies prepared against the purified enzyme partially (50%) inhibited FAD phosphohydrolase activity in lysosomal membrane preparations but had no effect on the soluble lysosomal acid pyrophosphatase known to hydrolyze FAD. This enzyme could not be detected immunochemically in preparations of microsomes, Golgi, plasma membranes, mitochondrial membranes, or the soluble lysosomal fraction, suggesting that the enzyme is different from either soluble lysosomal acid pyrophosphatase or other FAD hydrolyzing activities in the liver cell.  相似文献   

8.
An alkaline fructose 1,6-bisphosphatase activity associated with soybean (Glycine max cv Beeson) chloroplasts appears to be membrane-bound. The pH optimum of the membrane-associated activity corresponds to that found for activity associated with the stroma. Illumination of washed thylakoids results in an increase in alkaline fructose 1,6-bisphosphatase activity in the absence of any added stromal factors. Exposure to pH 8.0 results in a partial release of enzyme activity from the membrane. The activation status of the enzyme does not appear to alter its association with the membrane.  相似文献   

9.
Dihydrouracil dehydrogenase (NADP+) (EC 1.3.1.2) was partially purified from the cytosol fraction of rat liver and fractionated by disc gel electrophoresis. A major and minor band were visualized by staining for enzyme activity. The substrate specificity of these bands was investigated. It was found that both bands were two to three times more active with dihydrothymine as substrate than with dihydrouracil in the presence of NADP+ and the optimum pH of 7.4. Mitochondrial fractions containing most of the NADH-dependent uracil reductase of rat liver cells were fractionated by centrifugation in sucrose density gradients. Two procedures involving linear or discontinuous gradients were used. By both, good separation of NADH- and NADPH- dependent reductases was achieved. Marker enzyme studies supported the view that the NADH-dependent enzyme is located principally in mitochondria whereas the NADPH-dependent enzyme is mainly in plasma and endoplasmic reticulum membranes. For the NADH-dependent reductase the apparent Km for thymine at pH 7.4 was 1.39 times that found for uracil whereas for the NADPH-dependent enzyme the apparent Km values were similar for the two substrates at this pH. Dihydrouracil was the principal product isolated by paper chromatography from the reaction mixture containing a partially purified fraction of mitochondria, uracil and NADH at pH 7.4. This fraction also catalyzed the formation of radioactive carbon dioxide from [2-14C]uracil. The proportion of CO2 formed by the mitochondria was about 10% of that formed by the original homogenate.  相似文献   

10.
Endothelin converting enzyme activities in the soluble fraction of cultured bovine aortic endothelial cells were characterized. The two major endothelin converting enzyme activities were eluted from a hydrophobic chromatography column and the elution profile of the endothelin converting enzyme activities was the same as that of cathepsin D activities. These activities had a same pH optimum at pH 3.5 and were effectively inhibited by pepstatin A. Furthermore, anti-cathepsin D antiserum absorbed these activities as well as cathepsin D activity. Immunoblotting analysis using the antiserum showed the major active fractions have immunostainable components of identical molecular weights with cathepsin D. From these results, we concluded that the major endothelin converting activities in the soluble fraction of endothelial cells are due to cathepsin D. In addition to these cathepsin D activities, a minor endothelin converting enzyme activity with an optimum pH at 3.5 was found, which does not have angiotensin I generating (cathepsin D) activity from renin substrate and needs much higher concentrations of pepstatin A to inhibit the activity than cathepsin D.  相似文献   

11.
The possible occurrence of sialyltransferase activity in the plasma membranes surrounding nerve endings (synaptosomal membranes) was studied, using calf brain cortex. The synaptosomal membranes were prepared by an improved procedure which provided: (a) a ?nerve ending fraction” consisting of at least 85% well-preserved nerve endings and containing only small quantities of membranes of intracellular origin; (b) a ?synaptosomal membrane fraction” carrying high amounts of authentic plasma membrane markers (Na+-K+ ATPase, 5′-nucleotidase, sialidase, gangliosides) with values of specific activity four to fivefold higher than those in the ?nerve ending fraction” and very small amounts of cerebroside sulphotransferase, marker of the Golgi apparatus, and of other markers of intracellular membranes (rotenone-insensitive NADH and NADPH: cytochrome c reductases), the specific activities of which were, respectively, 0.5- and 0.7-fold that in the ?nerve ending fraction”. Thus the preparation of synaptosomal membranes used had the characteristics of plasma membranes and carried a negligible contamination of membranes of intracellular origin. The distribution of sialyltransferase activity in the main brain subcellular fractions (microsomes; P2 fraction; nerve ending fraction; mitochondria) resembled most closely that of thiamine pyrophosphatase, the enzyme known to be linked to the Golgi apparatus and the plasma membranes and of acetylcholine esterase, the enzyme known to be linked to either intracellular or plasma membranes. The enrichment of sialyltransferase activity in the ?synaptosomal membrane fraction”, referred to the ?nerve ending fraction”, was practically the same as that exhibited by authentic plasma membrane markers. All this is consistent with the hypothesis that in calf brain cortex sialyltransferase has two different subcellular locations: one at the level of intracellular structures, most likely the Golgi apparatus (as described by other authors), the other in the synaptosomal plasma membranes. The basic properties (pH optimum, V/S, V/t and V/protein relationships) and detergent requirements of the synaptosomal membrane-bound sialyltransferase were established. The highest enzyme activities were recorded on exogenous acceptors, lactosylceramide and ds -fetuin. The Km values for CMP-NeuNAc were different using lactosylceramide and ds -fetuin as acceptor substrates (0.57 and 0.135 mm , respectively); the thermal stability of the enzyme acting on glycolipid acceptor was higher than that on the glycoprotein acceptor; the effect of detergents was different when using glycoprotein from glycolipid acceptors; no competition was observed between lactosylceramide and ds -fetuin. Thus the synaptosomal membranes carry at least two different sialyltransferase activities: one acting on lactosylceramide (and glycolipid acceptors), the other working on ds -fetuin (and glycoprotein acceptors). Ganglioside GM3 was recognized as the product of synaptosomal membrane-bound sialyltransferase activity working on lactosylceramide as acceptor substrate.  相似文献   

12.
The presence of an enzyme in rat liver which hydroluzes sucrose is demonstrated in this report. The hydrolysis of sucrose was studied in vivo after injecting [14C]sucrose into rats, and a method was developed for the extraction and analysis of the radioactive sugars stored within subcellular particles. The results show that, besides sucrose, glucose and fructose are also found in the lysosomal fraction of the liver homogenate. In vitro studies reveal the presence of a sucrase, although the activity of the enzyme is very low. Intracellular distribution studies indicate that sucrase is present in the lysosomes as well as in the microsomes, the microsomal enzyme having a pH optimum different from that of the lysosomal enzyme.  相似文献   

13.
1. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase occurred in Euglena gracilis SM-ZK, and is located in cytosol. 2. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase were partially purified, and both enzyme activities were not separated during the partial purification. 3. The pH optimum for fructose 6-phosphate, 2-kinase activity was 7.0. The saturation curve of the enzyme activity for ATP concentration was hyperbolic, and the Km value for the substrate was 0.88 mM. On the other hand, the saturation curve of the enzyme activity for fructose 6-phosphate concentration was sigmoidal, and the K0.5 value for the substrate was 70 microM. 4. The pH optimum for fructose 2,6-bisphosphatase activity was 6.5. The saturation curve for fructose 2,6-bisphosphate concentration was sigmoidal, and the K0.5 value for the substrate was 1.29 microM. Fructose 2,6-bisphosphate showed a substrate inhibition at high concentration over 5 microM, and the enzyme activity was completely inhibited by 20 microM of fructose 2,6-bisphosphate.  相似文献   

14.
The phosphatidylglycerophosphatase (EC 3.1.3.27) activity of rat liver mitochondria was investigated by assaying the conversion of 14C-labelled phosphatidylglycerophosphate to phosphatidylglycerol. The activity was associated with a mitochondrial membrane fraction and could not be released into solution employing techniques applicable to a peripheral membrane protein. The enzyme was partially purified by sonication, pH 5.0 precipitation, and gel filtration. Various ionic and nonionic detergents as well as numerous divalent cations inhibited the phosphatase. The enzyme displayed a high affinity for phosphatidylglycerophosphate.  相似文献   

15.
An endoglycosidase is described in isolated liver plasma membranes that brings about a rapid and selective degradation of membrane-associated heparan sulphate, pre-labelled biosynthetically with Na2(35)SO4. The enzyme attacked mainly the polysaccharide chains of a hydrophobic membrane proteoglycan and it had little effect on a proteoglycan that could be displaced from the membranes with 1.0 M-NaCl. The highest activity was measured in the pH range 7.5-8.0, and the enzyme was almost completely inhibited below pH 5.5. Breakdown of susceptible polysaccharide chains was fast, being complete in 20-30 min. The major oligosaccharide fraction (Mr approx. 6000) produced by the enzyme was considerably smaller than the intact heparan sulphate chains. Enzyme activity was retained in membranes solubilized in 1% (v/v) Triton X-100. The high pH optimum and plasma-membrane association distinguish this enzyme from other heparan sulphate-degrading endoglycosidases that have acid pH optima and may be of lysosomal origin. A plasma-membrane endoglycosidase could modulate cellular interactions mediated by heparan sulphate, and/or release biologically active fragments of the polysaccharide from the cell periphery.  相似文献   

16.
It was reported that subcellular fractionation of bovine adrenal medulla results in the separation of distinct, non-calcium-dependent phospholipases A2--one associated with chromaffin granule ghosts, another with lysosomes. The basis of this distinction is pH optimum: in routine assays utilizing neat liposomal substrates, the chromaffin granule ghost-associated enzyme is alkaline-active whereas the lysosomal enzyme is acid-active (Husebye, E.S. and Flatmark, T. (1987) Biochim. Biophys. Acta 920, 120-130). We now report that biomembranes after liposomal substrates and/or lysosomal phospholipase A2 such that the enzyme now hydrolyzes them (at low cation concentration) with an alkaline pH optimum. In a lysosomal membrane fraction, phospholipase A2 activity at pH 7.5 relative to activity at pH 5.0 increases as increasing amounts of lysosomal membranes are assayed. The pH optimum of chromaffin granule ghost-associated phospholipase A2 toward liposomal substrates is likewise biomembrane-dependent and, when assayed carefully, is indistinguishable on the basis of optimal pH from the lysosomal enzyme. Although chromaffin granule ghost-associated phospholipase A2 is most likely a lysosomal contaminant, its broad, biomembrane-modulated pH range may still allow it to participate in catecholamine secretion. More importantly, however, sensitivity of adrenal medullary lysosomal phospholipase A2 to biomembranes broadens its potential physiologic pH range and may also play a role in the regulation of this potentially deleterious activity.  相似文献   

17.
Abstract Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans . Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

18.
Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans. Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

19.
We examined the degradation of Alzheimer's ß-amyloid protein (1–40) by soluble and synaptic membrane fractions from post mortem human and fresh rat brain using HPLC. Most of the activity at neutral pH was in the soluble fraction. The activity was thiol and metal dependent, with a similar inhibition profile to insulin-degrading enzyme. Immunoprecipitation of insulin-degrading enzyme from the human soluble fraction using a monoclonal antibody removed over 85% of the ß-amyloid protein degrading activity. Thus insulin-degrading enzyme is the main soluble ß-amyloid degrading enzyme at neutral pH in human brain. The highest ß-amyloid protein degrading activity in the soluble fractions occurred between pH 4–5, and this activity was inhibited by pepstatin, implicating an aspartyl protease. Synaptic membranes had much lower ß-amyloid protein degrading activity than the soluble fraction. EDTA (2mM) caused over 85% inhibition of the degrading activity but inhibitors of endopeptidases –24.11, –24.15, –24.16, angiotensin converting enzyme, aminopeptidases, and carboxypeptidases had little or no effect.  相似文献   

20.
The structural basis of anomalous kinetics of rabbit liver aryl sulfatase A   总被引:1,自引:0,他引:1  
Rabbit liver aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) is inactivated during the hydrolysis of nitrocatechol sulfate and the rate of formation of turnover-modified aryl sulfatase A depends on the initial velocity of the enzymatic reaction. Organic solvents such as ethanol and dioxane favor the anomalous kinetic behavior. The turnover-modified enzyme can apparently be reactivated by arsenate, phosphate, pyrophosphate, and sulfate in the presence of nitrocatechol sulfate. The apparent dissociation constants of these ions in the reactivation of the enzyme are similar to their Ki values. Sulfite, which is a competitive inhibitor, does not reactivate the turnover-modified enzyme. Thus, all known activators are competitive inhibitors but not all competitive inhibitors are effective as activators. Inactivation of aryl sulfatase A during hydrolysis of 35S-labeled substrate at pH values near the pH optimum (pH 5–6) is accompanied by the incorporation of radioactivity into the protein molecule and the turnover-modified enzyme is thereby covalently labeled. The stoichiometry of the incorporation of radioactivity corresponds to 2 g atom of sulfur per mole of enzyme monomer, or 1 g atom of sulfur per equivalent peptide chain. It is also shown that isolated turnover-modified rabbit liver aryl sulfatase A has lost approximately 76% of its secondary structure as compared to the native enzyme. The specific activity of the inactive enzyme is also decreased by 82%. Turnover-modified rabbit liver aryl sulfatase A is partially reactivated by sulfate ions in the presence of nitrocatechol sulfate. However, circular dichroism measurements and fluorescence spectra of the isolated “reactivated” turnover-modified enzyme indicate only a further loss of secondary structure. The specific activity of this “reactivated” enzyme is in fact decreased. The loss in secondary structure and the enzyme activity of the “reactivated” aryl sulfatase A is prevented in the presence of sulfate ions. Turnover-modified rabbit liver aryl sulfatase A behaves as a very fragile molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号