首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

It has been shown that IL-9 plays a proinflammatory role in the pathogenesis of certain autoimmune diseases. This study was designed to investigate the possible role of IL-9 in the development of experimental autoimmune uveoretinitis (EAU) and the effect of IFN-β on its expression.

Methods

EAU was induced in B10RIII mice by immunization with interphotoreceptor retinoid-binding protein peptide 161–180 (IRBP161–180). IFN-β was administered subcutaneously to IRBP161–180 immunized mice every other day from day one before immunization to the end of the study. Splenocytes and draining lymph node (DLN) cells from EAU mice or control mice or EAU mice treated with IFN-β or PBS were stimulated with anti-CD3/CD28 or IRBP161–180 for 3 days. Naïve T cells cultured under Th1 or Th17 polarizing conditions were incubated in the presence or absence of IFN-β for 4 days. Effector/memory T cells were activated by anti-CD3/CD28 in the presence or absence of IFN-β for 3 days. IFN-β-treated monocytes were cocultured with naïve T cells or effector/memory T cells for 3 days. Culture supernatants were collected and IL-9 was detected by ELISA.

Results

IL-9 expression in splenocytes and DLN cells was increased in EAU mice during the inflammatory phase and returned back to lower levels during the recovery phase. IFN-β in vivo treatment significantly inhibited EAU activity in association with a down-regulated expression of IL-9. In vitro polarized Th1 and Th17 cells both secreted IL-9 and the addition of IFN-β suppressed production of IL-9 by both Th subsets. Beside its effect on polarized Th cells, IFN-β also suppressed the secretion of IL-9 by effector/memory T cells. However, IFN-β-treated monocytes had no effect on the production of IL-9 when cocultured with naïve or effector/memory T cells.

Conclusion

IL-9 expression is increased during EAU which could be suppressed by IFN-β.  相似文献   

2.
Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35–55; occasionally, EAE is not well induced despite MOG35–55 immunization. To confirm that EAE induction varies with difference in MOG35–55 properties, we compared three MOG35–55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35–55 properties modulate EAE induction, and MOG35–55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis.  相似文献   

3.

Background

Experimental autoimmune encephalomyelitis (EAE) models are important vehicles for studying the effect of infectious elements such as Pertussis toxin (PTx) on disease processes related to acute demyelinating encephalomyelitis (ADEM) or multiple sclerosis (MS). PTx has pleotropic effects on the immune system. This study was designed to investigate the effects of PTx administered intracerebroventricularly (icv) in preventing downstream immune cell infiltration and demyelination of the spinal cord.

Methods and Findings

EAE was induced in C57BL/6 mice with MOG35–55. PTx icv at seven days post MOG immunization resulted in mitigation of clinical motor symptoms, minimal T cell infiltration, and the marked absence of axonal loss and demyelination of the spinal cord. Integrity of the blood brain barrier was compromised in the brain whereas spinal cord BBB integrity remained intact. PTx icv markedly increased microglia numbers in the brain preventing their migration to the spinal cord. An in vitro transwell study demonstrated that PTx inhibited migration of microglia.

Conclusion

Centrally administered PTx abrogated migration of microglia in EAE mice, limiting the inflammatory cytokine milieu to the brain and prevented dissemination of demyelination. The effects of PTx icv warrants further investigation and provides an attractive template for further study regarding the pleotropic effects of infectious elements such as PTx in the pathogenesis of autoimmune disorders.  相似文献   

4.
Experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), is mediated by myelin-specific autoreactive T cells that cause inflammation and demyelination in the central nervous system (CNS), with significant contributions from activated microglia and macrophages. The molecular bases for expansion and activation of these cells, plus trafficking to the CNS for peripheral cells, are not fully understood. Allograft inflammatory factor-1 (Aif-1) (also known as ionized Ca2+ binding adapter-1 [Iba-1]) is induced in leukocytes in MS and EAE; here we provide the first assessment of Aif-1 function in this setting. After myelin oligodendrocyte glycoprotein peptide (MOG35–55) immunization, Aif-1–deficient mice were less likely than controls to develop EAE and had less CNS leukocyte infiltration and demyelination; their spinal cords contained fewer CD4 T cells and microglia and more CD8 T cells. These mice also showed significantly less splenic CD4 T-cell expansion and activation, plus decreased proinflammatory cytokine expression. These findings identify Aif-1 as a potent molecule that promotes expansion and activation of CD4 T cells, plus elaboration of a proinflammatory cytokine milieu, in MOG35–55-induced EAE and as a potential therapeutic target in MS.  相似文献   

5.
The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP) T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P.berghei NK65 and treated with chloroquine (CQ), with MOG35–55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE) was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35–55-immunized mice after adoptive transfer of P.berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.  相似文献   

6.
The potential role of Nogo-66 Receptor 1 (NgR1) on immune cell phenotypes and their activation during neuroinflammatory diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), is unclear. To further understand the function of this receptor on haematopoietically-derived cells, phenotypic and functional analyses were performed using NgR1-deficient (ngr1-/-) animals. Flow cytometry-based phenotypic analyses performed on blood, spleen, thymus, lymph nodes, bone marrow and central nervous-system (CNS)-infiltrating blood cells revealed no immunological defects in naïve ngr1-/- animals versus wild-type littermate (WTLM) controls. EAE was induced by either recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or by MOG35–55 peptide, a B cell-independent model. We have demonstrated that in ngr1-/- mice injected with MOG35–55, a significant reduction in the severity of EAE correlated with reduced axonal damage present in the spinal cord when compared to their WTLM controls. However, despite a reduction in axonal damage observed in the CNS of ngr1-/- mice at the chronic stage of disease, no clinical differences could be attributed to a specific genotype when rMOG was used as the encephalitogen. Following MOG35–55-induction of EAE, we could not derive any major changes to the immune cell populations analyzed between ngr1-/- and WTLM mice. Collectively, these data demonstrate that NgR1 has little if any effects on the repertoire of immune cells, their activation and trafficking to the CNS.  相似文献   

7.

Background

The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was investigated as well.

Methodology/Principal Findings

EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG35–55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset.

Conclusion

We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of EAE-inflicted mice, both in prophylactic and therapeutic approaches. We hypothesized that the increased number of regulatory T cells induced by the CQ treatment is involved in the reduction of the clinical signs of EAE.  相似文献   

8.
The administration of interleukin 33 and deletion of IL-33 receptor, ST2 molecule, affects the induction of autoimmunity in different experimental models of human autoimmune diseases. The aim of this study was to analyze the effect of ST2 deletion on the induction of experimental autoimmune encephalomyelitis (EAE) in resistant BALB/c mice. Mice were immunized with MOG35–55 peptide or disease was induced by passive transfer of encephalitogenic singenic cells and EAE was clinically and histologically evaluated. Expression of intracellular inflammatory cytokines, markers of activation and chemokine receptors on lymphoid tissue and CNS infiltrating mononuclear cells was analyzed by flow cytometry. We report here that deletion of ST2−/− molecule abrogates resistance of BALB/c mice to EAE induction based on clinical and histopathological findings. Brain and spinal cord infiltrates of ST2−/− mice had significantly higher number of CD4+ T lymphocytes containing inflammatory cytokines compared to BALB/c WT mice. Adoptive transfer of ST2−/− primed lymphocytes induced clinical signs of the disease in ST2−/− as well as in WT mice. MOG35–55 restimulated ST2−/− CD4+ cells as well as ex vivo analyzed lymph node cells had higher expression of T-bet and IL-17, IFN-γ, TNF-α and GM-CSF in comparison with WT CD4+ cells. ST2−/− mice had higher percentages of CD4+ cells expressing chemokine receptors important for migration to CNS in comparison with WT CD4+ cells. Draining lymph nodes of ST2−/− mice contained higher percentage of CD11c+CD11b+CD8 cells containing inflammatory cytokines IL-6 and IL-12 with higher expression of activation markers. Transfer of ST2−/− but not WT dendritic cells induced EAE in MOG35–55 immunized WT mice. Our results indicate that ST2 deficiency attenuates inherent resistance of BALB/c mice to EAE induction by enhancing differentiation of proinflammatory antigen presenting cells and consecutive differentiation of encephalitogenic T cells in the draining lymph node rather than affecting their action in the target tissue.  相似文献   

9.
Sun M  Yang Y  Yang P  Lei B  Du L  Kijlstra A 《PloS one》2011,6(5):e19870

Background

Experimental autoimmune uveoretinitis (EAU) serves as a model for human intraocular inflammation. IFN-β has been used in the treatment of certain autoimmune diseases. Earlier studies showed that it ameliorated EAU; however, the mechanisms involved in this inhibition are still largely unknown.

Methodology/Principal Findings

B10RIII mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 161–180 in Complete Freund''s adjuvant. Splenocytes from different time points after immunization were used to evaluate the expression of IFN-β. An increased expression of IFN-β was observed during EAU and its highest expression was observed on day 16, 3 days after the peak of intraocular inflammation. Splenocytes and draining lymph node cells from mice immunized with IRBP161-180 on day 13 and control mice were activated with anti-CD3/anti-CD28 antibodies or IRBP161-180 to evaluate the production of IFN-γ and IL-17. The results showed that IFN-γ and IL-17 were significantly higher in immunized mice as compared to the control mice when exposed to anti-CD3/anti-CD28 antibodies. However, the production of IFN-γ and IL-17 was detected only in immunized mice, but not in the control mice when stimulated with IRBP161-180. Multiple subcutaneous injections of IFN-β significantly inhibited EAU activity in association with a down-regulated expression of IFN-γ, IL-17 and an enhanced IL-10 production. In an in vitro system using cells from mice, IFN-β suppressed IFN-γ production by CD4+CD62L T cells, IL-17 production by CD4+CD62L+/- T cells and proliferation of CD4+CD62L+/- T cells. IFN-β inhibited the secretion of IL-6, but promoted the secretion of IL-10 by monocytes. IFN-β-treated monocytes inhibited IL-17 secretion by CD4+CD62L+/- T cells, but did not influence IFN-γ expression and T cell proliferation.

Conclusions/Significance

IFN-β may exert its inhibitory effect on EAU by inhibiting Th1, Th17 cells and modulating relevant cytokines. IFN-β may provide a potential treatment for diseases mediated by Th1 and Th17 cells.  相似文献   

10.
Literature data suggest possible link between influenza vaccination and development of autoimmune processes. Therefore, the aim of the study was to investigate the effect of influenza vaccination on spatial learning in mice with experimental autoimmune encephalomyelitis (EAE). EAE was induced in eight-week-old C57BL/6J female mice by subcutaneous immunization (MOG35–55 in complete Freund’s adjuvant) and Pertussis vaccine injected intraperitoneally. Mice were vaccinated with influenza vaccine three days before MOG immunization. The hippocampal-dependent spatial learning test, Morris Water Maze test (MWM), was performed before and after EAE induction. Significant difference (P < 0.05) in the time for completing the Morris Water Maze task was found between mice with mild clinical signs of EAE when compared to other mice. However no significant difference was observed between mice with EAE and mice with EAE that were vaccinated with influenza vaccine. Hippocampal tissue lesions in EAE mice are in correlation with memory impairment. Study shows no influence of influenza vaccine on progression of clinical signs of EAE, spatial learning and memory impairment.  相似文献   

11.
The preventive and therapeutic mechanisms in multiple sclerosis are not clearly understood. We investigated whether Hyungbangpaedok-san (HBPDS), a traditional herbal medicine, has a beneficial effect in experimental autoimmune encephalomyelitis (EAE) mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Onset-treatment with 4 types of HBPDS (extracted using distilled water and 30%/70%/100% ethanol as the solvent) alleviated neurological signs, and HBPDS extracted within 30% ethanol (henceforth called HBPDS) was more effective. Onset-treatment with HBPDS reduced demyelination and the recruitment/infiltration and activation of microglia/macrophages in the spinal cord of EAE mice, which corresponded to the reduced mRNA expression of pro-inflammatory cytokines (TNF-α, IL–6, and IL–1β), iNOS, and chemokines (MCP–1, MIP–1α, and RANTES) in the spinal cord. Onset-treatment with HBPDS inhibited changes in the components of the blood-brain barrier such as astrocytes, adhesion molecules (ICAM–1 and VCAM–1), and junctional molecules (claudin–3, claudin–5, and zona occludens–1) in the spinal cord of EAE mice. Onset-treatment with HBPDS reduced the elevated population of CD4+, CD4+/IFN-γ+, and CD4+/IL–17+ T cells in the spinal cord of EAE mice but it further increased the elevated population of CD4+/CD25+/Foxp3+ and CD4+/Foxp3+/Helios+ T cells. Pre-, onset-, post-, but not peak-treatment, with HBPDS had a beneficial effect on behavioral impairment in EAE mice. Taken together, HBPDS could alleviate the development/progression of EAE by regulating the recruitment/infiltration and activation of microglia and peripheral immune cells (macrophages, Th1, Th17, and Treg cells) in the spinal cord. These findings could help to develop protective strategies using HBPDS in the treatment of autoimmune disorders including multiple sclerosis.  相似文献   

12.

Background

Multiple sclerosis (MS), a demyelinating disease of the central nervous system, is one of the most prevalent neurological disorders in the industrialized world. This disease afflicts more than two million people worldwide, over two thirds of which are women. MS is typically diagnosed between the ages of 20–40 and can produce debilitating neurological impairments including muscle spasticity, muscle paralysis, and chronic pain. Despite the large sex disparity in MS prevalence, clinical and basic research investigations of how sex and estrous cycle impact development, duration, and severity of neurological impairments and pain symptoms are limited. To help address these questions, we evaluated behavioral signs of sensory and motor functions in one of the most widely characterized animal models of MS, the experimental autoimmune encephalomyelitis (EAE) model.

Methods

C57BL/6 male and female mice received flank injection of complete Freund’s adjuvant (CFA) or CFA plus myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) to induce EAE. Experiment 1 evaluated sex differences of EAE-induced neurological motor deficits and neuropathic pain-like behavior over 3 weeks, while experiment 2 evaluated the effect of estrous phase in female mice on the same behavioral measures for 3 months. EAE-induced neurological motor deficits including gait analysis and forelimb grip strength were assessed. Neuropathic pain-like behaviors evaluated included sensitivity to mechanical, cold, and heat stimulations. Estrous cycle was determined daily via vaginal lavage.

Results

MOG35-55-induced EAE produced neurological impairments (i.e., motor dysfunction) including mild paralysis and decreases in grip strength in both females and males. MOG35-55 produced behavioral signs of neuropathic pain—mechanical and cold hypersensitivity—in females, but not males. MOG35-55 did not change cutaneous heat sensitivity in either sex. Administration of CFA or CFA?+?MOG35-55 prolonged the time spent in diestrus for 2 weeks, after which normal cycling returned. MOG35-55 produced fewer neurological motor deficits when mice were in proestrus relative to non-proestrus phases.

Conclusions

We conclude that female mice are superior to males for the study of neuropathic pain-like behaviors associated with MOG35-55-induced EAE. Further, proestrus may be protective against EAE-induced neurological deficits, thus necessitating further investigation into the impact that estrous cycle exerts on MS symptoms.
  相似文献   

13.

Background

Clinical studies of B cell depletion in Multiple Sclerosis (MS) have revealed that B Lymphocytes are involved in the neuro-inflammatory process, yet it remains unclear how B cells can exert pro- and anti-inflammatory functions during MS. Experimental Autoimmune Encephalomyelitis (EAE) is an animal model of MS whereby myelin-specific T cells become activated and subsequently migrate to the Central Nervous System (CNS) where they perform pro-inflammatory functions such as cytokine secretion. Typically EAE is induced by immunization of mice of a susceptible genetic background with peptide antigen emulsified in Complete Freund''s Adjuvant. However, novel roles for B-lymphocytes in EAE may also be explored by immunization with full-length myelin oligodendrocyte glycoprotein (MOG) that contains the B cell conformational epitope. Here we show that full length MOG immunization promotes a chronic disease in mice that depends on antigen-driven secondary diversification of the B cell receptor.

Methods

Activation-Induced Deaminase (AID) is an enzyme that is essential for antigen-driven secondary diversification of the B cell receptor. We immunized AID−/− mice with the extracellular domain (amino acids 1–120) of recombinant human MOG protein (rhMOG) and examined the incidence and severity of disease in AID−/− versus wild type mice. Corresponding with these clinical measurements, we also evaluated parameters of T cell activation in the periphery and the CNS as well as the generation of anti-MOG antibodies (Ab).

Conclusions

AID−/− mice exhibit reduced severity and incidence of EAE. This suggests that the secondary diversification of the B cell receptor is required for B cells to exert their full encephalogenic potential during rhMOG-induced EAE, and possibly also during MS.  相似文献   

14.
Analogs of immunodominant myelin peptides involved in multiple sclerosis (MS: the most common autoimmune disease) have been extensively used to modify the immune response over the progression of the disease. The immunodominant 35–55 epitope of myelin oligodendrocyte glycoprotein (MOG35–55) is an autoantigen appearing in MS and stimulates the encephalitogenic T cells, whereas mannan polysaccharide (Saccharomyces cerevisiae) is a carrier toward the mannose receptor of dendritic cells and macrophages. The conjugate of mannan-MOG35–55 has been extensively studied for the inhibition of chronic experimental autoimmune encephalomyelitis (EAE: an animal model of MS) by inducing antigen-specific immune tolerance against the clinical symptoms of EAE in mice. Moreover, it presents a promising approach for the immunotherapy of MS under clinical investigation. In this study, a competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect the MOG35–55 peptide that is conjugated to mannan. Intra- and inter-day assay experiments proved that the proposed ELISA methodology is accurate and reliable and could be used in the following applications: (i) to identify the peptide (antigen) while it is conjugated to mannan and (ii) to adequately address the alterations that the MOG35–55 peptide may undergo when it is bound to mannan during production and stability studies.  相似文献   

15.
Myelin oligodendrocyte glycoprotein (MOG) is an antigen of the myelin sheath, which may trigger immune cell responses and the production of auto‐antibodies in multiple sclerosis (MS). In this study, we used MOG35‐55‐induced experimental autoimmune encephalomyelitis (EAE), a model of human MS, to assess the production of catalytically active immunoglobulin G (IgG) antibodies or abzymes which have been shown to be present in sera of patients with several autoimmune diseases. Here, we show that IgGs from the sera of control C57BL/6 mice are catalytically inactive. During development of EAE, a specific reorganization of the immune system of mice occurred leading to a condition which was associated with the generation of catalytically active IgGs hydrolysing DNA, myelin basic protein (MBP) and MOG which was associated with increased proteinuria, changes in differentiation of mice bone marrow hematopoietic stem cells (HSCs) and an increase in proliferation of lymphocytes in bone marrow, spleen and thymus as well as a significant suppression of cell apoptosis in these organs. The strongest alterations were found in the early disease phase (18–24 days after immunization) and were less pronounced in later EAE stages (40 days after EAE induction). We conclude that a significant increase in DNase and proteolytic activities of antibodies may be considered the earliest statistically significant marker of MOG‐induced EAE in mice. The possible differences in immune system reorganizations during preclinical phases of the disease, acute and late EAE, leading to production of different auto‐antibodies and abzymes as well other changes are discussed.  相似文献   

16.
The most commonly used immunogen to induce experimental autoimmune encephalomyelitis is MOG35‐55, a 21‐residue peptide derived from myelin oligodendrocyte glycoprotein (MOG). In most studies, mice exhibit a chronic disease; however, in some studies mice show a transient disease. One variable that is not often controlled for is the peptide fraction of the purified MOG material, which can vary from less than 50% to over 90%, with the remainder of mass primarily comprised of the counter ion used for peptide purification. We compared the development of clinical signs in female C57Bl6 mice immunized with two commercially available MOG35‐55 peptides of similar purity but different peptide fraction (MOG‐A being 45%; MOG‐B being 72%). A single immunization with MOG‐A induced a chronic disease course with some recovery at later stages, whereas immunization with MOG‐B induced a similar course of disease but with significantly lower average clinical scores despite a higher peptide content. The addition of a booster immunization significantly increased clinical severity with both preparations, and significantly reduced the average day of onset using MOG‐A. To determine if the counter ion could influence disease, we compared MOG‐B‐containing trifluoroacetate with MOG‐B‐containing acetate. Although disease incidence and severity were similar, the average day of disease onset occurred approximately 5 days earlier with the use of MOG‐B‐containing trifluoroacetate. These results demonstrate that differences in peptide fraction influence the course of encephalomyelitis disease, which may be due in part to the levels of counter ions present in the purified material. These findings underscore the fact that a knowledge of peptide fraction is as critical as knowledge of peptide purity when using peptides from different sources.

  相似文献   


17.
The MOG35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice is a useful animal model to explore therapeutic approaches to T cell-mediated autoimmune diseases because the dominant T-cell epitope(s) have been defined. It is rational that antigen-specific immunosuppression can be induced by using MHC-peptide complexes as specific TCR ligand(s) that interact with autoreactive T cells in the absence of co-stimulation. In this study, a soluble divalent MOG35-55/I-Ab fusion protein (MOG35-55/I-Ab dimer) was constructed to specifically target the autoreactive CD4+ T cells in the EAE mouse. Intraperitoneal administration of the MOG35-55/I-Ab dimer significantly delayed and ameliorated EAE symptoms by reducing EAE-related inflammation in the mouse CNS and reducing encephalitogenic Th1 and Th17 cells in the peripheral lymphoid organs. We observed that dimer intervention at a concentration of 1.2 nM suppressed MOG35-55 peptide-specific 2D2 transgenic T cells (2D2 T cells) proliferation by over 90% after in vitro activation with MOG35-55 peptide. The mechanisms involved in this antigen-specific dimer-mediated suppression were found to be downregulated TCR-CD3 expression as well as upregulated expression of membrane-bound TGF-β (mTGF-β) and IL-10 suppressive cytokines by the autoreactive CD4+ T cells. Collectively, our data demonstrates that soluble divalent MHC class II molecules can abrogate pathogenic T cells in EAE. Furthermore, our data suggests that this strategy may provide an efficient and clinically useful option to treat autoimmune diseases.  相似文献   

18.
Background:Cannabinoids (CBs) have been found to regulate the immune system, affect innate and adaptive immune responses, and reduce inflammatory reactions. This study assessed the therapeutic effects of GW-405833 synthetic CB2 agonist on inflammatory factors as well as locomotor activity in experimental autoimmune encephalomyelitis (EAE).Methods:In this experimental study, 48 adult male C57BL/6 mice were randomly and equally assigned to eight groups. By injecting 250 mg of MOG35-55 peptide, EAE was induced. Every other day for 17 days after EAE onset, EAE-afflicted mice in groups 1–3 received an intraperitoneal injection of GW-405833 at a dose of 3, 10, and 30 mg/kg, respectively. Clinical status and locomotor activity, measured using the beam walking assay, were assessed every other day during the first 17 days after EAE onset. Mice were euthanized in day 17th of treatment and the serum levels of the IL-1β, IL-12, CRP, and TNF-α proinflammatory cytokines as well as IL-4 and TGF-β anti-inflammatory cytokines were measured by ELISA method.Results:Clinical manifestations of EAE in groups 2 and 3 were significantly milder than group 4 and locomotor activity in groups 1–3 was significantly better than group 4 in days 5–17 (p< 0.05). GW-405833 also significantly decreased the levels of IL-12, TNF-α, and CRP and significantly increased the levels of IL-4 and TGF-β but had no significant effects on the level of IL-1β. GW-405833 was not associated with significant side effects.Conclusion:The CB2 receptor agonist GW-405833, improves clinical conditions and reduces inflammation in mice with EAE.Key Words: Clinical evaluation, Experimental autoimmune encephalomyelitis, GW-405833, Locomotor activity, Multiple sclerosis, Proinflammatory cytokines  相似文献   

19.
20.
Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund’s Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH) 2D3 was able to control EAE development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号