首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free methionine-R-sulfoxide reductase (fRMsr) is a new type of methionine sulfoxide reductase that catalyzes the reduction of free methionine-R-sulfoxide to methionine. This enzyme cannot reduce oxidized methionine residues in proteins. While three Cys residues, Cys-91, Cys-101 and Cys-125, have been demonstrated to be involved in the catalysis by Saccharomyces cerevisiae fRMsr, their specific functions have not been fully established. In this work, we performed in vivo growth complementation experiments using S. cerevisiae cells lacking all three known methionine sulfoxide reductases. Cells containing a C125S construct, in which Cys-125 in fRMsr was replaced with Ser, did not grow in methionine sulfoxide medium, whereas cells containing C91S, C101S, or C91/101S constructs could grow in this medium. In addition, when assayed with thioredoxin and glutaredoxin reduction systems, the C125S form was inactive, whereas C91S and C101S had 1-2% and 9-10%, respectively, of the activity of the wild-type fRMsr. These data show that Cys-125 is the catalytic residue in fRMsr.  相似文献   

2.
Methionine sulfoxide reductases (Msrs) are oxidoreductases that catalyze thiol-dependent reduction of oxidized methionines. MsrA and MsrB are the best known Msrs that repair methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO) residues in proteins, respectively. In addition, an Escherichia coli enzyme specific for free Met-R-SO, designated fRMsr, was recently discovered. In this work, we carried out comparative genomic and experimental analyses to examine occurrence, evolution, and function of fRMsr. This protein is present in single copies and two mutually exclusive subtypes in about half of prokaryotes and unicellular eukaryotes but is missing in higher plants and animals. A Saccharomyces cerevisiae fRMsr homolog was found to reduce free Met-R-SO but not free Met-S-SO or dabsyl-Met-R-SO. fRMsr was responsible for growth of yeast cells on Met-R-SO, and the double fRMsr/MsrA mutant could not grow on a mixture of methionine sulfoxides. However, in the presence of methionine, even the triple fRMsr/MsrA/MsrB mutant was viable. In addition, fRMsr deletion strain showed an increased sensitivity to oxidative stress and a decreased life span, whereas overexpression of fRMsr conferred higher resistance to oxidants. Molecular modeling and cysteine residue targeting by thioredoxin pointed to Cys101 as catalytic and Cys125 as resolving residues in yeast fRMsr. These residues as well as a third Cys, resolving Cys91, clustered in the structure, and each was required for the catalytic activity of the enzyme. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in S. cerevisiae.Among the 20 common amino acids in proteins, Met and Cys are the residues most susceptible to oxidation by reactive oxygen species (ROS).3 Upon oxidation, Met forms a diastereomeric mixture of methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO). Met-S-SO and Met-R-SO can be reduced back to Met by MsrA (Met-S-SO reductase) and MsrB (Met-R-SO reductase), respectively (1). These enzymes have been reported to play important roles in the protection of cells and proteins against oxidative stress (28). Reversible Met oxidation has also been proposed to scavenge ROS, thereby protecting cells from oxidative damage (911). Increased expression of MsrA and MsrB can extend the life span of yeast cells and fruit flies, whereas deletion of the MsrA gene leads to the reduction in life span in mice and yeast (1214).Previously, three MsrB isozymes and a single MsrA were found in mammals. MsrB1 (also known as SelR or SelX) is a selenoprotein, which contains selenocysteine (Sec) in the active site and is localized to cytosol and nucleus. MsrB2 and MsrB3 are Cys-containing homologs of MsrB1. MsrB2 resides in mitochondria, whereas human MsrB3 has two alternative splice forms, wherein MsrB3A localizes to the endoplasmic reticulum and MsrB3B is targeted to mitochondria (15).The catalytic mechanism of MsrA involves a sulfenic acid intermediate at the catalytic Cys followed by the formation of a disulfide bond between the catalytic and resolving Cys. A third Cys may then form a disulfide with the resolving Cys (16, 17). The resulting disulfide is reduced by thioredoxin or other oxidoreductases, generating the initial, reduced form of the protein. X-ray structures of MsrAs from several organisms have been solved (17, 18).Cys-containing MsrBs (e.g. mammalian MsrB2 and MsrB3) follow the same mechanism, although the two Msr types have no homology and are characterized by different structural folds (1921). Sec-containing mammalian MsrB1 has also been characterized and compared with Cys-containing MsrBs (20). Interestingly, Cys-containing MsrBs share some active site features (e.g. conserved residues His77, Val81, and Asn97, numbering based on mouse MsrB1 sequence), which are absent in selenoprotein MsrB1s. When these three residues were introduced into the Sec-containing MsrB1, the enzyme was inactive. However, when the three residues were introduced into the Cys mutant form of MsrB1, the activity was partially recovered (20). This evidence supports the idea that catalytic Cys and Sec require different active site features.In addition to MsrA and MsrB functions, previous studies suggested the presence of additional Msr activities in Escherichia coli and yeast cells, which were especially evident in cells deficient in both enzymes (14, 2123). Recently, Lowther and colleagues (24) discovered a new enzyme, designated fRMsr (free Met-R-SO reductase), which catalyzes the reduction of free Met-R-SO in E. coli. They showed that this activity is associated with a GAF-like-domain-containing protein. Homologs of this enzyme were found in other bacteria as well as in eukaryotes, suggesting that these proteins also could function as fRMsrs. However, none of these other proteins have been functionally characterized.In this work, we cloned a yeast homolog of bacterial fRMsr and functionally characterized it with regard to the in vivo function and catalytic mechanism. In addition, we carried out comparative genomic analyses to examine evolution of this protein family. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in both prokaryotes and unicellular eukaryotes.  相似文献   

3.
Methionine sulfoxide reductases (Msrs) are thiol-dependent enzymes which catalyze conversion of methionine sulfoxide to methionine. Three Msr families, MsrA, MsrB, and fRMsr, are known. MsrA and MsrB are responsible for the reduction of methionine-S-sulfoxide and methionine-R-sulfoxide residues in proteins, respectively, whereas fRMsr reduces free methionine-R-sulfoxide. Besides acting on proteins, MsrA can additionally reduce free methionine-S-sulfoxide. Some MsrAs and MsrBs evolved to utilize catalytic selenocysteine. This includes MsrB1, which is a major MsrB in cytosol and nucleus in mammalian cells. Specialized machinery is used for insertion of selenocysteine into MsrB1 and other selenoproteins at in-frame UGA codons. Selenocysteine offers catalytic advantage to the protein repair function of Msrs, but also makes these proteins dependent on the supply of selenium and requires adjustments in their strategies for regeneration of active enzymes. Msrs have roles in protecting cellular proteins from oxidative stress and through this function they may regulate lifespan in several model organisms.  相似文献   

4.
A new family of methionine-sulfoxide reductase (Msr) was recently described. The enzyme, named fRMsr, selectively reduces the R isomer at the sulfoxide function of free methionine sulfoxide (Met-R-O). The fRMsrs belong to the GAF fold family. They represent the first GAF domain to show enzymatic activity. Two other Msr families, MsrA and MsrB, were already known. MsrA and MsrB reduce free Met-S-O and Met-R-O, respectively, but exhibit higher catalytic efficiency toward Met-O within a peptide or a protein context. The fold of the three families differs. In the present work, the crystal structure of the fRMsr from Neisseria meningitidis has been determined in complex with S-Met-R-O. Based on biochemical and kinetic data as well as genomic analyses, Cys118 is demonstrated to be the catalytic Cys on which a sulfenic acid is formed. All of the structural factors involved in the stereoselectivity of the l-Met-R-O binding were identified and account for why Met-S-O, DMSO, and a Met-O within a peptide are not substrates. Taking into account the structural, enzymatic, and biochemical information, a scenario of the catalysis for the reductase step is proposed. Based on the thiol content before and after Met-O reduction and the stoichiometry of Met formed per subunit of wild type and Cys-to-Ala mutants, a scenario of the recycling process of the N. meningitidis fRMsr is proposed. All of the biochemical, enzymatic, and structural properties of the N. meningitidis fRMsr are compared with those of MsrA and MsrB and are discussed in terms of the evolution of function of the GAF domain.  相似文献   

5.
Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec95 and resolving Cys4 residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.  相似文献   

6.
We verified and generalized the catalytic features that selenocysteine (Sec) and cysteine (Cys) contribute to the reduction of methionine-R-sulfoxide using an anaerobic bacterial MsrB from Clostridium sp. OhILA as a model protein. The Sec-containing Clostridium MsrB form exhibited 100-fold higher activity than its Cys-containing form, revealing that Sec provided the catalytic advantage of higher activity. However, a resolving Cys was required for the thioredoxin (Trx)-dependent recycling process of the Sec-containing form. Thus, Trx could reduce the selenenylsulfide bond, but its Trx-dependent recycling process was much less efficient compared to that for the disulfide bond in the Cys-containing form, demonstrating an obvious catalytic disadvantage. These data agreed well with our previous data on mammalian MsrBs, and therefore suggested that the catalytic mechanisms, as well as the catalytic advantages and disadvantages provided by the Sec and Cys residues, are most likely conserved from anaerobic bacteria to mammals. Taken together, we propose that the use of Sec in MsrB may depend on a balance between the catalytic advantage of higher activity and the disadvantage of a less efficient regeneration process provided by this residue.  相似文献   

7.
Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form.  相似文献   

8.
We report the development of a novel fluorescent drug sensor from the bacterial drug target TEM-1 β-lactamase through the combined strategy of Val216→Cys216 mutation and fluorophore labelling for in vitro drug screening. The Val216 residue in TEM-1 is replaced with a cysteine residue, and the environment-sensitive fluorophore fluorescein-5-maleimide is specifically attached to the Cys216 residue in the V216C mutant for sensing drug binding at the active site. The labelled V216C mutant has wild-type catalytic activity and gives stronger fluorescence when β-lactam antibiotics bind to the active site. The labelled V216C mutant can differentiate between potent and impotent β-lactam antibiotics and can distinguish active-site binders from non-binders (including aggregates formed by small molecules in aqueous solution) by giving characteristic time-course fluorescence profiles. Mass spectrometric, molecular modelling and trypsin digestion results indicate that drug binding at the active site is likely to cause the fluorescein label to stay away from the active site and experience weaker fluorescence quenching by the residues around the active site, thus making the labelled V216C mutant to give stronger fluorescence in the drug-bound state. Given the ancestor''s role of TEM-1 in the TEM family, the fluorescent TEM-1 drug sensor represents a good model to demonstrate the general combined strategy of Val216→Cys216 mutation and fluorophore labelling for fabricating tailor-made fluorescent drug sensors from other clinically significant TEM-type β-lactamase variants for in vitro drug screening.  相似文献   

9.
The ethanologenic bacterium Zymomonas mobilis ZM4 is of special interest because it has a high ethanol yield. This is made possible by the two alcohol dehydrogenases (ADHs) present in Z. mobilis ZM4 (zmADHs), which shift the equilibrium of the reaction toward the synthesis of ethanol. They are metal-dependent enzymes: zinc for zmADH1 and iron for zmADH2. However, zmADH2 is inactivated by oxygen, thus implicating zmADH2 as the component of the cytosolic respiratory system in Z. mobilis. Here, we show crystal structures of zmADH2 in the form of an apo-enzyme and an NAD+-cofactor complex. The overall folding of the monomeric structure is very similar to those of other functionally related ADHs with structural variations around the probable substrate and NAD+ cofactor binding region. A dimeric structure is formed by the limited interactions between the two subunits with the bound NAD+ at the cleft formed along the domain interface. The catalytic iron ion binds near to the nicotinamide ring of NAD+, which is likely to restrict and locate the ethanol to the active site together with the oxidized Cys residue and several nonpolar bulky residues. The structures of the zmADH2 from the proficient ethanologenic bacterium Z. mobilis, with and without NAD+ cofactor, and modeling ethanol in the active site imply that there is a typical metal-dependent catalytic mechanism.  相似文献   

10.
The methionine S-sulfoxide reductase MsrA catalyzes the reduction of methionine sulfoxide, a ubiquitous reaction depending on the thioredoxin system. To investigate interactions between MsrA and thioredoxin (Trx), we determined the crystal structures of yeast MsrA/Mxr1 in their reduced, oxidized, and Trx2-complexed forms, at 2.03, 1.90, and 2.70 Å, respectively. Comparative structure analysis revealed significant conformational changes of the three loops, which form a plastic “cushion” to harbor the electron donor Trx2. The flexible C-terminal loop enabled Mxr1 to access the methionine sulfoxide on various protein substrates. Moreover, the plasticity of the Trx binding site on Mxr1 provides structural insights into the recognition of diverse substrates by a universal catalytic motif of Trx.  相似文献   

11.
The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNACys (Sep-tRNACys) into Cys-tRNACys in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNASec (Sep-tRNASec) to selenocysteinyl-tRNASec (Sec-tRNASec) using a selenium donor. While the Sep moiety of the aminoacyl-tRNA substrates is the same in both reactions, tRNACys and tRNASec differ greatly in sequence and structure. In an Escherichia coli genetic approach that tests for formate dehydrogenase activity in the absence of selenium donor we show that Sep-tRNASec is a substrate for SepCysS. Since Sec and Cys are the only active site amino acids known to sustain FDH activity, we conclude that SepCysS converts Sep-tRNASec to Cys-tRNASec, and that Sep is crucial for SepCysS recognition.  相似文献   

12.
Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 Å. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 Å C-α root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.  相似文献   

13.
The methionine sulfoxide reductases (Msrs) are thioredoxin-dependent oxidoreductases that catalyse the reduction of the sulfoxide function of the oxidized methionine residues. These enzymes have been shown to regulate the life span of a wide range of microbial and animal species and to play the role of physiological virulence determinant of some bacterial pathogens. Two structurally unrelated classes of Msrs exist, MsrA and MsrB, with opposite stereoselectivity towards the R and S isomers of the sulfoxide function, respectively. Both Msrs share a similar three-step chemical mechanism including (1) the formation of a sulfenic acid intermediate on the catalytic Cys with the concomitant release of the product—methionine, (2) the formation of an intramonomeric disulfide bridge between the catalytic and the regenerating Cys and (3) the reduction of the disulfide bridge by thioredoxin or its homologues. In this study, four structures of the MsrA domain of the PilB protein from Neisseria meningitidis, representative of four catalytic intermediates of the MsrA catalytic cycle, were determined by X-ray crystallography: the free reduced form, the Michaelis-like complex, the sulfenic acid intermediate and the disulfide oxidized forms. They reveal a conserved overall structure up to the formation of the sulfenic acid intermediate, while a large conformational switch is observed in the oxidized form. The results are discussed in relation to those proposed from enzymatic, NMR and theoretical chemistry studies. In particular, the substrate specificity and binding, the catalytic scenario of the reductase step and the relevance and role of the large conformational change observed in the oxidized form are discussed.  相似文献   

14.
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.  相似文献   

15.
Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata and its recombinant protein was overexpressed. The purified protein was shown to exist predominantly as a dimer by sodium dodecyl sulfate-polyacrylamide gel electrolysis in the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. However, the protein showed increased Prx activity with increasing dithiothreitol concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains two Cys residues. The Cys60 located in the conserved active site is the putative active peroxidatic Cys. The role of Cys31 was investigated by site-directed mutagenesis. The C31S mutant (C31 → S31) exists predominantly as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher than that of the corresponding wild-type protein by nearly twofold at 12 μg/mL. The substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis constant (K M) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys31 in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the activity of Prx. The C31 residue does not function as a resolving Cys and therefore the TcPrx2 must follow the reaction mechanism of 1-Cys Prx. This TcPrx2 represents a new isoform of Prx family.  相似文献   

16.
Ann L. Umbach  James N. Siedow 《BBA》2006,1757(2):135-142
Two Cys residues, CysI and CysII, are present in most plant alternative oxidases (AOXs). CysI inactivates AOX by forming a disulfide bond with the corresponding CysI residue on the adjacent subunit of the AOX homodimer. When reduced, CysI associates with α-keto acids, such as pyruvate, to activate AOX, an effect mimicked by charged amino acid substitutions at the CysI site. CysII may also be a site of AOX activity regulation, through interaction with the small α-keto acid, glyoxylate. Comparison of Arabidopsis AOX1a (AtAOX1a) mutants with single or double substitutions at CysI and CysII confirmed that glyoxylate interacted with either Cys, while the effect of pyruvate (or succinate for AtAOX1a substituted with Ala at CysI) was limited to CysI. A variety of CysII substitutions constitutively activated AtAOX1a, indicating that neither the catalytic site nor, unlike at CysI, charge repulsion is involved. Independent effects at each Cys were suggested by lack of CysII substitution interference with pyruvate stimulation at CysI, and close to additive activation at the two sites. However, results obtained using diamide treatment to covalently link the AtAOX1a subunits by the disulfide bond indicated that CysI must be in the reduced state for activation at CysII to occur.  相似文献   

17.
Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys165, a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys165 modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys165 was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys165 is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys165. The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors.  相似文献   

18.
Methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. In vivo, Msrs are essential in the protection of cells against oxidative damage to proteins and in the virulence of some bacteria. Two structurally unrelated classes of Msrs, named MsrA and MsrB, exist. MsrB are stereospecific to R epimer on the sulfur of sulfoxide. All MsrB share a common reductase step with the formation of a sulfenic acid intermediate. For the subclass of MsrB whose recycling process passes through the formation of an intradisulfide bond, the recycling reducer is thioredoxin. In the present study, X-ray structures of Neisseria meningitidis MsrB have been determined. The structures have a fold based on two β-sheets, similar to the fold already described for other MsrB, with the recycling Cys63 located in a position favorable for disulfide bond formation with the catalytic Cys117. X-ray structures of Xanthomonas campestris MsrB have also been determined. In the C117S MsrB structure with a bound substrate, the recycling Cys31 is far from Ser117, with Trp65 being essential in the reductase step located in between. This positioning prevents the formation of the Cys31-Cys117 disulfide bond. In the oxidized structure, a drastic conformational reorganization of the two β-sheets due to withdrawal of the Trp65 region from the active site, which remains compatible with an efficient thioredoxin-recycling process, is observed. The results highlight the remarkable structural malleability of the MsrB fold.  相似文献   

19.
Steroids and retinoids are signaling molecules that control a variety of physiological processes. 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, supplying biologically active estrogen-regulating sex-specific differentiation. Photoreceptor-associated retinol dehydrogenase (prRDH) is evolutionarily closely related to 17β-HSD1 but reduces all-trans retinal to all-trans retinol, contributing to rhodopsin regeneration in the visual cycle. Sequence alignment revealed a new enzyme-specific conserved amino acid close to the active site: methionine (position 144 in human enzyme) in prRDH and glycine (position 145) in 17β-HSD1. We investigated the role of this residue in substrate discrimination in human and zebrafish enzymes. Both recombinant enzymes were expressed in HEK 293 cells followed by normalization of expression by semiquantitative Western blots. Changing of the prRDH-specific methionine to glycine resulted in a gain of function: the mutants now catalyzed the reduction of estrone and all-trans retinal. Human and zebrafish wild-type 17β-HSD1s efficiently catalyzed the reduction of all-trans retinal to its alcohol. Exchange of glycine for methionine increased the catalytic activity of 17β-HSD1 toward all-trans retinal in zebrafish but not in the human enzyme, in which the opposite effect was observed. Molecular modeling showed that the zebrafish 17β-HSD1 substrate-binding pocket is similar to that of prRDH and methionine insertion benefits all-trans retinal reduction. In contrast, in human 17β-HSD1, the insertion of the bulky methionine causes a disruption of substrate-binding site. We demonstrate for the first time the role of a single amino acid in the evolution of these functionally diverse enzymes and suggest new physiological functions for 17β-HSD1 in retinoid metabolism. This has implications for the validation of inhibitors of 17β-HSD1 developed for cancer treatment.  相似文献   

20.
Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) is an enzyme in the branched-chain amino acid biosynthesis pathway where it catalyzes the conversion of 2-acetolactate into (2R)-2,3-dihydroxy-3-isovalerate or the conversion of 2-aceto-2-hydroxybutyrate into (2R,3R)-2,3-dihydroxy-3-methylvalerate. KARI catalyzes two reactions—alkyl migration and reduction—and requires Mg2+ and NADPH for activity. To date, the only reported structures for a plant KARI are those of the spinach enzyme-Mn2+-(phospho)ADP ribose-(2R,3R)-2,3-dihydroxy-3-methylvalerate complex and the spinach KARI-Mg2+-NADPH-N-hydroxy-N-isopropyloxamate complex, where N-hydroxy-N-isopropyloxamate is a predicted transition-state analog. These studies demonstrated that the enzyme consists of two domains, N-domain and C-domain, with the active site at the interface of these domains. Here, we have determined the structures of the rice KARI-Mg2+ and rice KARI-Mg2+-NADPH complexes to 1.55 Å and 2.80 Å resolutions, respectively. In comparing the structures of all the complexes, several differences are observed. Firstly, the N-domain is rotated up to 15° relative to the C-domain, expanding the active site by up to 4 Å. Secondly, an α-helix in the C-domain that includes residues V510-T519 and forms part of the active site moves by ∼ 3.9 Å upon binding of NADPH. Thirdly, the 15 C-terminal amino acid residues in the rice KARI-Mg2+ complex are disordered. In the rice KARI-Mg2+-NADPH complex and the spinach KARI structures, many of the 15 residues bind to NADPH and the N-domain and cover the active site. Fourthly, the location of the metal ions within the active site can vary by up to 2.7 Å. The new structures allow us to propose that an induced-fit mechanism operates to (i) allow substrate to enter the active site, (ii) close over the active site during catalysis, and (iii) open the active site to facilitate product release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号