首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The renal excretion of inorganic phosphate is regulated in large measure by three hormones, namely, parathyroid hormone, dopamine, and fibroblast growth factor-23. Recent experiments have indicated that the major sodium-dependent phosphate transporter in the renal proximal tubule, Npt2a, binds to the adaptor protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and in the absence of NHERF-1, the inhibitory effect of these three hormones is absent. From these observations, a new model for the hormonal regulation of renal phosphate transport was developed. The downstream signaling pathways of these hormones results in the phosphorylation of the PDZ 1 domain of NHERF-1 and the dissociation of Npt2a/NHERF-1 complexes. In turn, this dissociation facilitates the endocytosis of Npt2a with a subsequent decrease in the apical membrane abundance of the transporter and a decrease in phosphate reabsorption. The current review outlines the experimental observations supporting the operation of this unique regulatory system.  相似文献   

2.
The present experiments using primary cultures of renal proximal tubule cells derived from wild-type and NHERF-1 knockout animals examines the regulation of NHE3 by phenylthiohydantoin (PTH) and the regulation of phosphate transport in response to alterations in the media content of phosphate. Forskolin (34.8 +/- 6.2%) and PTH (29.7 +/- 1.8%) inhibited NHE3 activity in wild-type proximal tubule cells but neither forskolin (-3.2 +/- 3.3%) nor PTH (-16.6 +/- 8.1%) inhibited NHE3 activity in NHERF-1(-/-) cells. Using adenovirus-mediated gene transfer, expression of NHERF-1 in NHERF-1(-/-) proximal tubule cells restored the inhibitory response to forskolin (28.2 +/- 3.0%) and PTH (33.2 +/- 3.9%). Compared with high phosphate media, incubation of wild-type cells in low phosphate media resulted in a 36.0 +/- 6.3% higher rate of sodium-dependent phosphate transport and a significant increase in the abundance of Npt2a and PDZK1. NHERF-1(-/-) cells, on the other hand, had lower rates of sodium-dependent phosphate uptake and low phosphate media did not stimulate phosphate transport. Npt2a expression was not affected by the phosphate content of the media in NHERF-1 null cells although low phosphate media up-regulated PDZK1 abundance. Primary cultures of mice proximal tubule cells retain selected regulatory pathways observed in intact kidneys. NHERF-1(-/-) proximal tubule cells demonstrate defective regulation of NHE3 by PTH and indicate that reintroduction of NHERF-1 repairs this defect. NHERF-1(-/-) cells also do not adapt to alterations in the phosphate content of the media indicating that the defect resides within the cells of the proximal tubule and is not dependent on systemic factors.  相似文献   

3.
Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10(-9) m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10(-9) m). Low concentrations of FGF-23 (10(-13) m) and PTH (10(-11) m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway.  相似文献   

4.
Parathyroid hormone (PTH) inhibits the reabsorption of phosphate in the renal proximal tubule by disrupting the binding of the sodium-dependent phosphate transporter 2A (Npt2a) to the adapter protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1), a process initiated by activation of protein kinase C (PKC). To gain additional insights into the dynamic sequence of events, the time course of these responses was studied in living opossum kidney (OK) cells. Using a FRET-based biosensor, we found that PTH activated intracellular PKC within seconds to minutes. In cells expressing GFP-Npt2a and mCherry-NHERF, PTH did not affect the relative abundance of NHERF-1 but there was a significant and time-dependent decrease in the Npt2a/NHERF-1 ratio. The half-time to maximal dissociation was 15 to 20 min. By contrast, PTH had no effect on the fluorescence ratio for GFP-ezrin compared with mCherry-NHERF-1 at the apical surface. These experiments establish that PTH treatment of proximal tubule OK cells leads to rapid activation of PKC with the subsequent dissociation of Npt2a/NHERF-1 complexes. The association of NHERF-1 with Ezrin and their localization at the apical membrane, however, was unperturbed by PTH, thereby enabling the rapid recruitment and membrane reinsertion of Npt2a and other NHERF-1 targets on termination of the hormone response.  相似文献   

5.
Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.  相似文献   

6.
Ca2+ sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr697 and/or Thr855 (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser696 prevents phosphorylation at Thr697. However, the effects of Ser854 and dual Ser696–Thr697 and Ser854–Thr855 phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser696, Thr697, Ser854, and Thr855), Ser phosphorylation events (Ser696/Ser854) and dual Ser/Thr phosphorylation events (Ser696–Thr697 and Ser854–Thr855). Dual phosphorylation at Ser696–Thr697 and Ser854–Thr855 by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr697 and Thr855 by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser696, Thr697, Ser854, and Thr855 in rat caudal artery, whereas U46619 induced Thr697 and Thr855 phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser696–Thr697 and Ser854–Thr855 inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.  相似文献   

7.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

8.
Chk2 is a critical regulator of the cellular DNA damage repair response. Activation of Chk2 in response to IR-induced damage is initiated by phosphorylation of the Chk2 SQ/TQ cluster domain at Ser19, Ser33, Ser35, and Thr68. This precedes autophosphorylation of Thr383/Thr387 in the T-loop region of the kinase domain an event that is a prerequisite for efficient kinase activity. We conducted an in-depth analysis of phosphorylation within the T-loop region (residues 366–406). We report four novel phosphorylation sites at Ser372, Thr378, Thr389, and Tyr390. Substitution mutation Y390F was defective for kinase function. The substitution mutation T378A ablated the IR induction of kinase activity. Interestingly, the substitution mutation T389A demonstrated a 6-fold increase in kinase activity when compared with wild-type Chk2. In addition, phosphorylation at Thr389 was a prerequisite to phosphorylation at Thr387 but not at Thr383. Quantitative mass spectrometry analysis revealed IR-induced phosphorylation and subcellular distribution of Chk2 phosphorylated species. We observed IR-induced increase in phosphorylation at Ser379, Thr389, and Thr383/Thr389. Phosphorylation at Tyr390 was dramatically reduced following IR. Exposure to IR was also associated with changes in the ratio of chromatin/nuclear localization. IR-induced increase in chromatin localization was associated with phosphorylation at Thr372, Thr379, Thr383, Thr389, Thr383/Thr387, and Thr383/Thr389. Chk2 hyper-phosphorylated species at Thr383/Thr387/Thr389 and Thr383/Thr387/Thr389/Tyr390 relocalized from almost exclusively chromatin to predominately nuclear expression, suggesting a role for phosphorylation in regulation of chromatin targeting and egress. The differential impact of T-loop phosphorylation on Chk2 ubiquitylation suggests a co-dependence of these modifications. The results demonstrate that a complex interdependent network of phosphorylation events within the T-loop exchange region regulates dimerization/autophosphorylation, kinase activation, and chromatin targeting/egress of Chk2.  相似文献   

9.
In expression systems and in yeast, Na/H exchanger regulatory factor (NHERF)-1 and NHERF-2 have been demonstrated to interact with the renal brush border membrane proteins NHE3 and Npt2. In renal tissue of mice, however, NHERF-1 is required for cAMP regulation of NHE3 and for the apical targeting of Npt2 despite the presence of NHERF-2, suggesting another order of specificity. The present studies examine the subcellular location of NHERF-1 and NHERF-2 and their interactions with target proteins including NHE3, Npt2, and ezrin. The wild-type mouse proximal tubule expresses both NHERF-1 and NHERF-2 in a distinct pattern. NHERF-1 is strongly expressed in microvilli in association with NHE3, Npt2, and ezrin. Although NHERF-2 can be detected weakly in the microvilli, it is expressed predominantly at the base of the microvilli in the vesicle-rich domain. NHERF-2 appears to associate directly with ezrin and NHE3 but not Npt2. NHERF-1 is involved in the apical expression of Npt2 and the presence of other Npt2-binding proteins does not compensate totally for the absence of NHERF-1 in NHERF-1-null mice. Although NHERF-1 links NHE3 to the actin cytoskeleton through ezrin, the absence of NHERF-1 does not result in a generalized disruption of the architecture of the cell. Thus the mistargeting of Npt2 seen in NHERF-1-null mice likely represents a specific disruption of pathways mediated by NHERF-1 to achieve targeting of Npt2. These findings suggest that the organized subcellular distribution of the NHERF isoforms may play a role in the specific interactions mediating physiological control of transporter function.  相似文献   

10.
Wepreviously demonstrated that inhibition of Na-dependent phosphate(Pi) transport in osteoclasts led to reduced ATP levels anddiminished bone resorption. These findings suggested that Na/Pi cotransporters in the osteoclast plasma membraneprovide Pi for ATP synthesis and that the osteoclast mayutilize part of the Pi released from bone resorption forthis purpose. The present study was undertaken to define the cellularlocalization of Na/Pi cotransporters in the mouseosteoclast and to identify the proteins with which they interact. Usingglutathione S-transferase (GST) fusion constructs, wedemonstrate that the type IIa Na/Pi cotransporter (Npt2a)in osteoclast lysates interacts with the Na/H exchanger regulatoryfactor, NHERF-1, a PDZ protein that is essential for the regulation ofvarious membrane transporters. In addition, NHERF-1 in osteoclastlysates interacts with Npt2a in spite of deletion of a putativePDZ-binding domain within the carboxy terminus of Npt2a. In contrast,deletion of the carboxy-terminal TRL amino acid motif of Npt2asignificantly reduced its interaction with NHERF-1 in kidney lysates.Studies in osteoclasts transfected with green fluorescent protein-Npt2aconstructs indicated that Npt2a colocalizes with NHERF-1 and actin ator near the plasma membrane of the osteoclast and associates withezrin, a linker protein associated with the actin cytoskeleton, likelyvia NHERF-1. Furthermore, we demonstrate by RT/PCR of osteoclast RNAand in situ hybridization that the type III Na/Picotransporter, PiT-1, is also expressed in mouse osteoclasts. Toexamine the cellular distribution of PiT-1, we infected mouseosteoclasts with a retroviral vector encoding PiT-1 fused to an epitopetag. PiT-1 colocalizes with actin and is present on the basolateralmembrane of the polarized osteoclast, similar to that previouslyreported for Npt2a. Taken together, our data suggest that associationof Npt2a with NHERF-1, ezrin, and actin, and of PiT-1 with actin, maybe responsible for membrane sorting and regulation of theseNa/Pi cotransporters in the osteoclast.

  相似文献   

11.
Na(+)-K(+)-ATPase activity in renal proximal tubule is regulated by several hormones including parathyroid hormone (PTH) and dopamine. The current experiments explore the role of Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1) in dopamine-mediated regulation of Na(+)-K(+)-ATPase. We measured dopamine regulation of ouabain-sensitive (86)Rb uptake and Na(+)-K(+)-ATPase α1 subunit phosphorylation in wild-type opossum kidney (OK) (OK-WT) cells, OKH cells (NHERF-1-deficient), and OKH cells stably transfected with full-length human NHERF-1 (NF) or NHERF-1 constructs with mutated PDZ-1 (Z1) or PDZ-2 (Z2) domains. Treatment with 1 μM dopamine decreased ouabain-sensitive (86)Rb uptake, increased phosphorylation of Na(+)-K(+)-ATPase α1-subunit, and enhanced association of NHERF-1 with D1 receptor in OK-WT cells but not in OKH cells. Transfection with wild-type, full-length, or PDZ-1 domain-mutated NHERF-1 into OKH cells restored dopamine-mediated regulation of Na(+)-K(+)-ATPase and D1-like receptor association with NHERF-1. Dopamine did not regulate Na(+)-K(+)-ATPase or increase D1-like receptor association with NHERF-1 in OKH cells transfected with mutated PDZ-2 domain. Dopamine stimulated association of PKC-ζ with NHERF-1 in OK-WT and OKH cells transfected with full-length or PDZ-1 domain-mutated NHERF-1 but not in PDZ-2 domain-mutated NHERF-1-transfected OKH cells. These results suggest that NHERF-1 mediates Na(+)-K(+)-ATPase regulation by dopamine through its PDZ-2 domain.  相似文献   

12.
13.
NHERF-1 (Na(+)-H(+) exchanger regulatory factor 1, also known as EBP50 ezrin-binding protein of 50 kDa) is a phosphoprotein that assembles multiprotein complexes via two PDZ domains and a C-terminal ezrin-binding domain. Current work utilized metabolic labeling in cultured cells expressing wild type GFP-NHERF-1 to define the physiological importance of NHERF-1 phosphorylation. Treatment of cells with phosphatase inhibitors calyculin A and okadaic acid enhanced NHERF-1 phosphorylation and inhibited its dimerization. Eliminating C-terminal serines abolished the modulation of NHERF-1 dimerization by phosphatase inhibitors and identified the phosphorylation of the PDZ1 domain that attenuated its binding to physiological targets, including beta(2)-adrenergic receptor, platelet-derived growth factor receptor, cystic fibrosis transmembrane conductance regulator, and sodium-phosphate cotransporter type IIa. The major covalent modification of PDZ1 was mapped to serine 77. Confocal microscopy of cultured cells suggested key roles for PDZ1 and ERM-binding domain in localizing NHERF-1 at the cell surface. The substitution S77A eliminated PDZ1 phosphorylation and increased NHERF-1 localization at the cell periphery. In contrast, S77D reduced NHERF-1 colocalization with cortical actin cytoskeleton. These data suggested that serine 77 phosphorylation played key role in modulating NHERF-1 association with plasma membrane targets and identified a novel mechanism by which PDZ1 phosphorylation may transduce hormonal signals to regulate the function of membrane proteins in epithelial tissues.  相似文献   

14.
15.
The neuron-specific cation chloride cotransporter KCC2 plays a crucial role in hyperpolarizing synaptic inhibition. Transporter dysfunction is associated with various neurological disorders, raising interest in regulatory mechanisms. Phosphorylation has been identified as a key regulatory process. Here, we retrieved experimentally observed phosphorylation sites of KCC2 from public databases and report on the systematic analysis of six phosphorylated serines, Ser25, Ser26, Ser937, Ser1022, Ser1025, and Ser1026. Alanine or aspartate substitutions of these residues were analyzed in HEK-293 cells. All mutants were expressed in a pattern similar to wild-type KCC2 (KCC2WT). Tl+ flux measurements demonstrated unchanged transport activity for Ser25, Ser26, Ser1022, Ser1025, and Ser1026 mutants. In contrast, KCC2S937D, mimicking phosphorylation, resulted in a significant up-regulation of transport activity. Aspartate substitution of Thr934, a neighboring putative phosphorylation site, resulted in a comparable increase in KCC2 transport activity. Both KCC2T934D and KCC2S937D mutants were inhibited by the kinase inhibitor staurosporine and by N-ethylmaleimide, whereas KCC2WT, KCC2T934A, and KCC2S937A were activated. The inverse staurosporine effect on aspartate versus alanine substitutions reveals a cross-talk between different phosphorylation sites of KCC2. Immunoblot and cell surface labeling experiments detected no alterations in total abundance or surface expression of KCC2T934D and KCC2S937D compared with KCC2WT. These data reveal kinetic regulation of transport activity by these residues. In summary, our data identify a novel key regulatory phosphorylation site of KCC2 and a functional interaction between different conformation-changing post-translational modifications. The action of pharmacological agents aimed to modulate KCC2 activity for therapeutic benefit might therefore be highly context-specific.  相似文献   

16.
Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser22/Ser23, reduces myofilament Ca2+ sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser22/Ser23 remains to be established. To determine the role of cTnI phosphorylation at Ser22/Ser23 in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser22/Ser23 are substituted by nonphosphorylatable Ala (cTnI-Ala2). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser22/Ser23 and decreased the Ca2+ sensitivity of force. In contrast, PKD had no effect on the Ca2+ sensitivity of force in myocardium from cTnI-Ala2 mice, in which Ser22/Ser23 were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala2 mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser273, Ser282, and Ser302, and revealed that PKD phosphorylates only Ser302. Furthermore, PKD phosphorylated Ser302 selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala2 mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca2+ sensitivity through cTnI phosphorylation at Ser22/Ser23 but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser302, which may mediate the latter effect.  相似文献   

17.
The sodium-dependent phosphate (Na/P(i)) transporters NaPi-2a and NaPi-2c play a major role in the renal reabsorption of P(i). The functional need for several transporters accomplishing the same role is still not clear. However, the fact that these transporters show differential regulation under dietary and hormonal stimuli suggests different roles in P(i) reabsorption. The pathways controlling this differential regulation are still unknown, but one of the candidates involved is the NHERF family of scaffolding PDZ proteins. We propose that differences in the molecular interaction with PDZ proteins are related with the differential adaptation of Na/P(i) transporters. Pdzk1(-/-) mice adapted to chronic low P(i) diets showed an increased expression of NaPi-2a protein in the apical membrane of proximal tubules but impaired up-regulation of NaPi-2c. These results suggest an important role for PDZK1 in the stabilization of NaPi-2c in the apical membrane. We studied the specific protein-protein interactions of Na/P(i) transporters with NHERF-1 and PDZK1 by FRET. FRET measurements showed a much stronger interaction of NHERF-1 with NaPi-2a than with NaPi-2c. However, both Na/P(i) transporters showed similar FRET efficiencies with PDZK1. Interestingly, in cells adapted to low P(i) concentrations, there were increases in NaPi-2c/PDZK1 and NaPi-2a/NHERF-1 interactions. The differential affinity of the Na/P(i) transporters for NHERF-1 and PDZK1 proteins could partially explain their differential regulation and/or stability in the apical membrane. In this regard, direct interaction between NaPi-2c and PDZK1 seems to play an important role in the physiological regulation of NaPi-2c.  相似文献   

18.
In order to clarify the developmental regulation of the eNOS activity in intestine by phosphorylation, we examined the immunohistochemical localizations of the eNOS phosphorylation sites at Ser1177, Ser116 and at Thr495 in cells of the mouse enteric mucosa and myenteric plexus at E13.5, E14.5, E16.5, E18.5, E20.5 and P3. In addition, in cells of the E16.5 stage the protein levels of eNOS and the phosphorylation sites of eNOS at Ser1177, Ser116 and at Thr495 were investigated by immunoblot. From E14.5 to P3, phosphorylation residues of eNOS at Ser1177 and at Ser116 were detected with different staining intensities in the enteric mucosa epithelium. In ganglion cells of the myenteric plexus Ser116 was identified at E18.5 to P3. The absence of phosphorylated Thr495 in cells of intestine during all developmental stages, was confirmed by immunoblot at E16.5. The immunoblot levels of eNOS and eNOS phosphorylated at Ser1177 and at Ser116 were comparable with the immunohistochemical results of E16.5 mouse intestine. It was concluded that development of epithelial cells of the enteric mucosa may be modulated by phosphorylation of eNOS at Ser1177 and at Ser116. The phosphorylation of eNOS in cells of the myenteric plexus is modulated at Ser116. These data suggest that there is a developmental stage and cell type dependent phosphorylation of eNOS.  相似文献   

19.
The rapamycin-sensitive mTOR complex 1 (mTORC1) promotes protein synthesis, cell growth, and cell proliferation in response to growth factors and nutritional cues. To elucidate the poorly defined mechanisms underlying mTORC1 regulation, we have studied the phosphorylation of raptor, an mTOR-interacting partner. We have identified six raptor phosphorylation sites that lie in two centrally localized clusters (cluster 1, Ser696/Thr706 and cluster 2, Ser855/Ser859/Ser863/Ser877) using tandem mass spectrometry and generated phosphospecific antibodies for each of these sites. Here we focus primarily although not exclusively on raptor Ser863 phosphorylation. We report that insulin promotes mTORC1-associated phosphorylation of raptor Ser863 via the canonical PI3K/TSC/Rheb pathway in a rapamycin-sensitive manner. mTORC1 activation by other stimuli (e.g. amino acids, epidermal growth factor/MAPK signaling, and cellular energy) also promote raptor Ser863 phosphorylation. Rheb overexpression increases phosphorylation on raptor Ser863 as well as on the five other identified sites (e.g. Ser859, Ser855, Ser877, Ser696, and Thr706). Strikingly, raptor Ser863 phosphorylation is absolutely required for raptor Ser859 and Ser855 phosphorylation. These data suggest that mTORC1 activation leads to raptor multisite phosphorylation and that raptor Ser863 phosphorylation functions as a master biochemical switch that modulates hierarchical raptor phosphorylation (e.g. on Ser859 and Ser855). Importantly, mTORC1 containing phosphorylation site-defective raptor exhibits reduced in vitro kinase activity toward the substrate 4EBP1, with a multisite raptor 6A mutant more strongly defective that single-site raptor S863A. Taken together, these data suggest that complex raptor phosphorylation functions as a biochemical rheostat that modulates mTORC1 signaling in accordance with environmental cues.  相似文献   

20.
A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号