首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied the acute effects of the inhalation of cigarette smoke on the central and peripheral airways of 35 open-chested and tracheotomized dogs by the direct measurement of central (Rc) and peripheral (Rp) airway resistances. Rc was calculated by dividing the pressure difference between a tracheal catheter and a retrograde catheter by mouth flow, and Rp was obtained by dividing the pressure difference between the retrograde catheter and a pleural capsule by mouth flow. The pleural capsule was attached to the pleural surface for alveolar pressure measurement. Rc and Rp were measured by the 2-Hz forced oscillation method. With lung inhalation of the smoke of two-thirds of one cigarette in vagi intact dogs, Rp increased to 239% of the control value and Rc increased to 112%. After bilateral vagotomy, Rp increased to 143% and Rc increased to 104%. Propranolol did not influence the results. Hexamethonium and atropine both blocked these responses when vagi were intact. When the upper trachea, larynx, and nasopharynx, which were completely blocked by vagotomy, were exposed to the smoke of two-thirds of a cigarette, Rp increased to 155% and Rc increased to 144%. We thus conclude that cigarette smoke causes a major increase in Rp, mainly via the vagal reflex and partially via the stimulation of parasympathetic ganglia (probably nicotine), and a minor increase in Rc via vagal reflex.  相似文献   

3.
4.
S Minamisawa  E Komuro  E Niki 《Life sciences》1990,47(24):2207-2215
Cigarette smoke has been found to induce the hemolysis of rabbit erythrocytes. The particulate phase had more profound effect than the gas phase. Neither free radical scavengers such as ascorbic acid, uric acid and water-soluble vitamin E analogue nor antioxidant enzymes such as catalase and superoxide dismutase suppressed the cigarette smoke-induced hemolysis, suggesting that free radicals, hydrogen peroxide, and superoxide were not the active species.  相似文献   

5.
Cigarette smoke (CS) is a rich source of radicals, predisposing the cell to oxidative stress resulting in inflammation. Chronic inflammation is a recognized risk factor for carcinogenesis. Cyclooxygenase-2 (COX-2) is a mediator of inflammatory pathway and may, therefore, contribute to carcinogenesis. There are several reports that suggest the association between CS and COX-2 associated risk to cancer. In the present study, we examined the role of celecoxib (a selective COX-2 inhibitor) in modulating the oxidative stress caused by CS inhalation in mice. CS exposure for a period of 10 weeks caused oxidative stress in the pulmonary and hepatic tissues, as evident from the increase in lipid peroxidation levels (LPO) and decrease in reduced glutathione (GSH) levels. Celecoxib (125 mg/kg body weight for 8 weeks) administration to CS inhaling mice reduced the oxidative stress by decreasing the LPO levels and enhancing the GSH levels in comparison to the CS-exposed group. CS exposure repressed the enzymatic antioxidant defense system, as evident from the decrease in catalase (CAT) and superoxide dismutase (SOD) activities. Co-adminstration of celecoxib considerably reversed the changes in the enzymatic antioxidant defense system. Histopathological studies of lungs showed that CS exposure induced alveolar wall destruction and air space enlargement. In co-treated group, the alveolar septa were thicker than normal with apparent infiltration of inflammatory cells. In CS-exposed group, hepatic tissue exhibited vacuolization and macrophage infiltration. Co-treatment with celecoxib restored the normal histoarchitechture in hepatic tissues of CS inhaling mice. Thus, the present study demonstrated that celecoxib adminstration reduced the oxidative stress-mediated risk to carcinogenesis, due to its ability to boost the antioxidant defense system.  相似文献   

6.
Biochemically and pathologically, there is strong evidence for both atopic and nonatopic airway sensitization, hyperresponsiveness, and inflammation as a consequence of exposure to tobacco mainstream or sidestream smoke particulate. There is growing evidence for the relation between exposure to mainstream and sidestream smoke and diseases resulting from reactive oxidant challenge and inflammation directly as a consequence of the combined activity of neutrophils, macrophages, dendritic cells, eosinophils, basophils, as a humoral immunological consequence of sensitization, and that the metal components of the particulate play a role in adjuvant effects. As an end consequence, carcinogenicity is a known outcome of chronic inflammation. Smokeless tobacco has been evaluated by the IARC as a group 1 carcinogen. Of the many harmful constituents in smokeless tobacco, oral tissue metallothionein gradients suggest that metals contribute to the toxicity from smokeless tobacco use and possibly sensitization. This work reviews and examines work on probable contributions of toxic metals from tobacco and smoke to pathology observed as a consequence of smoking and the use of smokeless tobacco.  相似文献   

7.
Kosmider B  Messier EM  Chu HW  Mason RJ 《PloS one》2011,6(12):e26059

Background

Cigarette smoke (CS) is a highly complex mixture and many of its components are known carcinogens, mutagens, and other toxic substances. CS induces oxidative stress and cell death, and this cell toxicity plays a key role in the pathogenesis of several pulmonary diseases.

Methodology/Principal Findings

We studied the effect of cigarette smoke extract (CSE) in human alveolar epithelial type I-like (ATI-like) cells. These are isolated type II cells that are differentiating toward the type I cell phenotype in vitro and have lost many type II cell markers and express type I cell markers. ATI-like cells were more sensitive to CSE than alveolar type II cells, which maintained their differentiated phenotype in vitro. We observed disruption of mitochondrial membrane potential, apoptosis and necrosis that were detected by double staining with acridine orange and ethidium bromide or Hoechst 33342 and propidium iodide and TUNEL assay after treatment with CSE. We also detected caspase 3 and caspase 7 activities and lipid peroxidation. CSE induced nuclear translocation of Nrf2 and increased expression of Nrf2, HO-1, Hsp70 and Fra1. Moreover, we found that Nrf2 knockdown sensitized ATI-like cells to CSE and Nrf2 overexpression provided protection against CSE-induced cell death. We also observed that two antioxidant compounds N-acetylcysteine and trolox protected ATI-like cells against injury by CSE.

Conclusions

Our study indicates that Nrf2 activation is a major factor in cellular defense of the human alveolar epithelium against CSE-induced toxicity and oxidative stress. Therefore, antioxidant agents that modulate Nrf2 would be expected to restore antioxidant and detoxifying enzymes and to prevent CS-related lung injury and perhaps lessen the development of emphysema.  相似文献   

8.
9.
Bernhard D  Rossmann A  Wick G 《IUBMB life》2005,57(12):805-809
Metals are vital for a huge number of physiological processes in the human body, but can also destroy health when the concentration is not within the physiologically favourable range. Cigarette smoking interferes with the carefully controlled metal homeostasis of the human body. This review focuses on the consequences of metal delivery to the human body by cigarette smoking and discusses the body's responses. The metal content of tobacco plants, smoke, the circulation, and various organs is discussed. Finally, we link individual cigarette smoke contained metals to the genesis of human diseases.  相似文献   

10.
Oxidative stress is a damaging process resulting from an imbalance between excessive generation of oxidant compounds and insufficient antioxidant defence mechanisms. Oxidative stress plays a crucial role in the initiation and progression of cigarette smoke-induced lung injury, deterioration in lung functions, and development of chronic obstructive pulmonary disease (COPD). In smokers and in patients with COPD, the increased oxidant burden derives from cigarette smoke per se, and from activated inflammatory cells releasing enhanced amounts of reactive oxygen and nitrogen species (ROS, RNS, respectively). Although mild oxidative stress resulting from cigarette smoking leads to the upregulation of the antioxidative enzymes synthesis in the lungs, high levels of ROS and RNS observed in patients with COPD overwhelm the antioxidant enzymes capacities, resulting in oxidant-mediated lung injury and cell death. In addition, depletion of antioxidative systems in the systemic circulation was consistently observed in such patients. The imbalance between the generation of ROS/RNS and antioxidant capacities — the state of “oxidative stress” — is one of the major pathophysiologic hallmarks in the development of COPD. Detrimental effects of oxidative stress include impairment of membrane functions, inactivation of membrane-bound receptors and enzymes, and increased tissue permeability. In addition, oxidative stress aggravates the inflammatory processes in the lungs, and contributes to the worsening of the protease-antiprotease imbalance. Several markers of oxidative stress, such as increases in lipid peroxidation products and reductions in glutathione peroxidase activity, have been shown to be related to the reductions in pulmonary functions. In the present article we review the current knowledge about the vicious cycle of cigarette smoking, oxidative stress, and inflammation in the pathogenesis of COPD.  相似文献   

11.
Cigarette smoke exposure is a major determinant of adverse lung health, but the molecular processes underlying its effects on inflammation and immunity remain poorly understood. Therefore, we sought to understand whether inflammatory and host defense determinants are affected during subchronic cigarette smoke exposure. Dose-response and time course studies of lungs from Balb/c mice exposed to smoke generated from 3, 6, and 9 cigarettes/day for 4 days showed macrophage- and S100A8-positive neutrophil-rich inflammation in lung tissue and bronchoalveolar lavage (BAL) fluid, matrix metalloproteinase (MMP) and serine protease induction, sustained NF-kappaB translocation and binding, and mucus cell induction but very small numbers of CD3+CD4+ and CD3+CD8+ lymphocytes. Cigarette smoke had no effect on phospho-Akt but caused a small upregulation of phospho-Erk1/2. Activator protein-1 and phospho-p38 MAPK could not be detected. Quantitative real-time PCR showed upregulation of chemokines (macrophage inflammatory protein-2, monocyte chemoattractant protein-1), inflammatory mediators (TNF-alpha, IL-1beta), leukocyte growth and survival factors [granulocyte-macrophage colony-stimulating factor, colony-stimulating factor (CSF)-1, CSF-1 receptor], transforming growth factor-beta, matrix-degrading MMP-9 and MMP-12, and Toll-like receptor (TLR)2, broadly mirroring NF-kappaB activation. No upregulation was observed for MMP-2, urokinase-type plasminogen activator, tissue-type plasminogen activator, and TLRs 3, 4, and 9. In mouse strain comparisons the rank order of susceptibility was Balb/c > C3H/HeJ > 129SvJ > C57BL6. Partition of responses into BAL macrophages vs. lavaged lung strongly implicated macrophages in the inflammatory responses. Strikingly, except for IL-10 and MMP-12, macrophage and lung gene profiles in Balb/c and C57BL/6 mice were very similar. The response pattern we observed suggests that subchronic cigarette smoke exposure may be useful to understand pathogenic mechanisms triggered by cigarette smoke in the lungs including inflammation and alteration of host defense.  相似文献   

12.
13.
Chemiluminescence from cigarette smoke (aerosol) and smoke "extracts" (suspensoids) are described. The emissons from aqueous and organic suspensoids persist for hours, are proportional to oxygen solubilities, possess energy of at least 1.8 electron volts, and display characteristics which suggest that the emissions may be partially sensitized by singlet oxygen.  相似文献   

14.
15.

Background

The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.

Methods

In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.

Results

In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.

Conclusions

Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.  相似文献   

16.
17.
Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631mg/m(3) of total particulate matter. Exposure started within 12h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were measured by (32)P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.  相似文献   

18.
Aqueous extract of cigarette smoke (CS) contains some stable oxidants, which oxidize human plasma proteins, bovine serum albumin, amino acid homopolymers, and also cause extensive oxidative degradation of microsomal proteins. Similar observations are made when the aqueous extract of cigarette smoke is replaced by whole phase CS solution or whole phase cigarette smoke. CS-induced microsomal protein degradation is a two step process: (i) oxidation of proteins by the oxidants present in the CS and (ii) rapid proteolytic degradation of the oxidized proteins by proteases present in the microsomes. Using aqueous extract of CS equivalent to that produced from one-twentieth of a cigarette, the observed initial and postcigarette smoke treated values of different parameters of oxidative damage per milligram of microsomal proteins are respectively: 0.24 and 1.74 nmoles for carbonyl formation, 125.4 and 62.8 fluorescence units for tryptophan loss, 10.2 and 33.4 fluorescence units for bityrosine formation, and 58.3 and 12.2 nmoles for loss of protein thiols. When compared with sodium dodecyl sulphate polyacrylamide gel electrophoresis profiles of untreated microsomal proteins, the extent of microsomal protein degradation after treatment with whole phase CS solution or aqueous extract of CS is above 90%. Ascorbate (100 microM) almost completely prevents cigarette smoke-induced protein oxidation and thereby protects the microsomes from subsequent proteolytic degradation. Glutathione is partially effective, but other antioxidants including superoxide dismutase, catalase, vitamin E, probucol, beta-carotene, mannitol, thiourea, and histidine are ineffective. The gas phase cigarette smoke contains unstable reactive oxygen species such as superoxide (O2*-) and hydrogen peroxide (H2O2) that can cause substantial oxidation of pure protein like albumin but is unable to produce significant oxidative damage of microsomal proteins. Gas phase cigarette smoke-induced albumin oxidation is not only inhibited by ascorbate and glutathione but also by superoxide dismutase, catalase and mannitol. The stable oxidants in the cigarette smoke are not present in the tobacco and are apparently produced by the interaction of O2*-/H2O2/OH* of the gas phase with some components of the tar phase during/following the burning of tobacco.  相似文献   

19.
20.
Kim HC  Jhoo WK  Ko KH  Kim WK  Bing G  Kwon MS  Shin EJ  Suh JH  Lee YG  Lee DW 《Life sciences》2000,66(4):317-326
We examined the effects of cigarette smoke (CS) on three parameters associated with kainic acid (KA)-induced neurotoxicity: seizure activity, cell loss in the hippocampus, and increased Fos-related antigen (FRA) expression. Animals were exposed to the main stream of CS from 15 Kentucky 2R1F research cigarettes containing 28.6 mg tar and 1.74 mg nicotine per cigarette, for 10 min a day, 6 days per week, for 4 weeks, using an automatic smoking machine. KA administration (10 mg/kg, i.p.) produced robust behavioral convulsions lasting 4-5 h. Pre-exposure to CS significantly reduced the seizures, mortality, and severe loss of cells in regions CA1 and CA3 of the hippocampus after KA administration. Consistently, pre-exposure to CS significantly attenuated the KA-induced increased FRA immunoreactivity in the hippocampus. In contrast, pretreatment with central nicotinic antagonist, mecamylamine (2 or 10 mg/kg, i.p.) blocked the neuroprotective effects mediated by CS in a dose-dependent manner. These results indicate that CS exposure provides neuroprotection against the KA insult via nicotinic receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号