首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secreted levels of HSP90α and overexpression of TCF12 have been associated with the enhancement of colorectal cancer (CRC) cell migration and invasion. In this study, we observed that CRC patients with tumor TCF12 overexpression exhibited both a higher rate of metastatic occurrence and a higher average serum HSP90α level compared with patients without TCF12 overexpression. Therefore, we studied the relationship between the actions of secreted HSP90α and TCF12. Like overexpressed TCF12, secreted HSP90α or recombinant HSP90α (rHSP90α) induced fibronectin expression and repressed E-cadherin, connexin-26, connexin-43, and gap junction levels in CRC cells. Consistently, rHSP90α stimulated invasive outgrowths of CRC cells from spherical structures during three-dimensional culture. rHSP90α also induced TCF12 expression in CRC cells. Its effects on CRC cell epithelial-mesenchymal transition, migration, and invasion were drastically prevented when TCF12 was knocked down. This suggests that TCF12 expression is required for secreted HSP90α to enhance CRC cell spreading. Through the cellular receptor CD91, rHSP90α facilitated the complex formation of CD91 with IκB kinases (IKKs) α and β and increased the levels of phosphorylated (active) IKKα/β and NF-κB. Use of an IKKα/β inhibitor or ectopic overexpression of dominant-negative IκBα efficiently repressed rHSP90α-induced TCF12 expression. Moreover, κB motifs were recognized in the gene sequence of the TCF12 promoter, and a physical association between NF-κB and the TCF12 promoter was detected in rHSP90α-treated CRC cells. Together, these results suggest that the CD91/IKK/NF-κB signaling cascade is involved in secreted HSP90α-induced TCF12 expression, leading to E-cadherin down-regulation and enhanced CRC cell migration/invasion.  相似文献   

2.
In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion.  相似文献   

3.
Interferon γ (IFN-γ), a multifunctional cytokine, was upregulated in the resected gastric cancer tissue. However, whether IFN-γ is involved in the regulation of gastric cancer has not been well elucidated. Herein, we aimed to investigate the effects and mechanism of IFN-γ on gastric cancer. In this study, we found a vital role of IFN-γ in enhancing proliferation, inhibiting apoptosis, and promoting cell migration and invasion in gastric cancer cells SGC-7901 and MGC-803. Additionally, IFN-γ activated nuclear factor κB (NF-κB) signaling pathway by upregulating the phosphorylation expression of p65 and IκBα, and induced the expression of integrin β3 in vitro. Therefore, to further investigate the relationship between IFN-γ and integrin β3, SGC-7901 cells were transfected with integrin β3 siRNA. And then cells expressed lower cell viability, migration, and invasion rates, while cell apoptosis was significantly enhanced. Meanwhile, expression of integrin β3, MMP-2, MMP-9, and NF-κB, including p65 and IκBα, and the nuclear translocation of NF-κB/p65 were dramatically repressed, whereas IFN-γ significantly improved the effects. Moreover, in vivo, the experiment of xenograft model and pulmonary metastasis model also retarded in integrin β3 siRNA group. And the expression of integrin β3, MMP-2, MMP-9, and NF-κB was repressed. However, the treatment with IFN-γ improved tumor volume, lung/total weight, tumor nodules, and the protein expression described above compared with integrin β3 siRNA group. Overall, the results indicated that IFN-γ induces gastric cancer cell proliferation and metastasis partially through the upregulation of integrin β3-mediated NF-κB signaling. Hence, the inhibition of IFN-γ or integrin β3 may be the key for the treatment of gastric cancer.  相似文献   

4.
Aldo-keto reductase 1B10 (AKR1B10) protein is a new tumor biomarker in humans. Our previous studies have shown that AKR1B10 is secreted through a lysosome-mediated nonclassical pathway, leading to an increase in the serum of breast cancer patients. This study illuminates the regulatory mechanism of AKR1B10 secretion. The cytosolic AKR1B10 associates with and is translocated to lysosomes by heat shock protein 90α (HSP90α), a chaperone molecule. Ectopic expression of HSP90α significantly increased the secretion of endogenous AKR1B10 and exogenous GFP-AKR1B10 fusion protein when cotransfected. Geldanamycin, a HSP90α inhibitor, dissociated AKR1B10-HSP90α complexes and significantly reduced AKR1B10 secretion in a dose-dependent manner. We characterized the functional domain in AKR1B10 and found that helix 10 (amino acids 233–240), located at the C terminus, regulates AKR1B10 secretion. Targeted point mutations recognized that amino acids Lys-233, Glu-236, and Lys-240 in helix 10 mediate the interaction of AKR1B10 with HSP90α. Together, our data suggest that HSP90α mediates AKR1B10 secretion through binding to its helix 10 domain. This finding is significant in exploiting the use of AKR1B10 in cancer clinics.  相似文献   

5.
6.
Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy.  相似文献   

7.
8.
Although mitochondrial dysfunction has been observed in various types of human cancer cells, the molecular mechanism underlying mitochondrial dysfunction mediated tumorigenesis remains largely elusive. To further explore the function of mitochondria and their involvement in the pathogenic mechanisms of cancer development, mitochondrial dysfunction clones of breast cancer cells were generated by rotenone treatment, a specific inhibitor of mitochondrial electron transport complex I. These clones were verified by mitochondrial respiratory defect measurement. Moreover, those clones exhibited increased reactive oxygen species (ROS), and showed higher migration and invasive behaviors compared with their parental cells. Furthermore, antioxidant N-acetyl cysteine, PEG-catalase, and mito-TEMPO effectively inhibited cell migration and invasion in these clones. Notably, ROS regulated malignant cellular behavior was in part mediated through upregulation of hypoxia-inducible factor-1 α and vascular endothelial growth factor. Our results suggest that mitochondrial dysfunction promotes cancer cell motility partly through HIF1α accumulation mediated via increased production of reactive oxygen species.  相似文献   

9.
Interleukin-1β (IL-1β) plays a critical mediator in the pathogenesis of eye diseases. The implication of IL-1β in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of IL-1β-induced MMP-9 expression in Statens Seruminstitut Rabbit Corneal Cells (SIRCs) are largely unclear. Here, we demonstrated that in SIRCs, IL-1β induced MMP-9 promoter activity and mRNA expression associated with an increase in the secretion of pro-MMP-9. IL-1β-induced pro-MMP-9 expression and MMP-9 mRNA levels were attenuated by pretreatment with the inhibitor of MEK1/2 (U0126), JNK1/2 (SP600125), NF-κB (Bay11-7082), or AP-1 (Tanshinone IIA) and transfection with siRNA of p42 or JNK2. Moreover, IL-1β markedly stimulated p42/p44 MAPK and JNK1/2 phosphorylation in SIRCs. In addition, IL-1β also enhanced p42/p44 MAPK translocation from the cytosol into the nucleus. On the other hand, IL-1β induced c-Jun and c-Fos mRNA expression, c-Jun phosphorylation, and AP-1 promoter activity. NF-κB translocation, IκBα degradation, and NF-κB promoter activity were also enhanced by IL-1β. Pretreatment with U0126 or SP600125 inhibited IL-1β-induced AP-1 and NF-κB promoter activity, but not NF-κB translocation from the cytosol into the nucleus. Finally, we established that IL-1β could stimulate SIRCs migration via p42/p44 MAPK-, JNK1/2-, AP-1-, and NF-κB-dependent MMP-9 induction. These results suggested that NF-κB and AP-1 activated by JNK1/2 and p42/p44 MAPK cascade are involved in IL-1β-induced MMP-9 expression in SIRCs.  相似文献   

10.
11.
Cell membrane translocation of heat shock protein gp96 from the endoplasmic reticulum has been observed in multiple tumors and is associated with tumor malignancy. However, the cancer-intrinsic function and the related mechanism of cell membrane gp96 as a pro-oncogenic chaperone remain further elucidated. In this study, we found that inhibition of gp96 intramolecular conformational changes by a single α-helix peptide p37 dramatically increased its binding to HER2, whereas decreased HER2 dimerization, phosphorylation and downstream signaling. Targeting cell membrane gp96 promoted HER2 ubiquitination and subsequent lysosomal degradation, which led to decreased cell growth and increased apoptosis, and inhibited tumor growth in vivo. We also demonstrate that gp96 inhibitory peptide p37 synergized with trastuzumab to suppress cell growth and induce apoptosis. Our work demonstrates that blocking gp96 conformational changes directs HER2 for cellular degradation, and represents a new therapeutic strategy for inhibiting HER2 signaling in cancer.  相似文献   

12.
Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion.  相似文献   

13.
Breast cancers contain a heterogeneous population of cells with a small percentage that possess properties similar to those found in stem cells. One of the widely accepted markers of breast cancer stem cells (BCSCs) is the cell surface marker CD44. As a glycoprotein, CD44 is involved in many cellular processes including cell adhesion, migration and proliferation, making it pro-oncogenic by nature. CD44 expression is highly up-regulated in BCSCs, and has been implicated in tumorigenesis and metastasis. However, the genetic mechanism that leads to a high level of CD44 expression in breast cancer cells and BCSCs is not well understood. Here, we identify a novel cis-element of the CD44 directs gene expression in breast cancer cells in a cell type specific manner. We have further identified key trans-acting factor binding sites and nuclear factors AP-1 and NFκB that are involved in the regulation of cell-specific CD44 expression. These findings provide new insight into the complex regulatory mechanism of CD44 expression, which may help identify more effective therapeutic targets against the breast cancer stem cells and metastatic tumors.  相似文献   

14.
15.
Pulmonary infection activates acute inflammatory responses by recruiting neutrophils to the infection site; this recruitment is promoted by interleukin-8 (IL-8). However, IL-8 production in response to Pseudomonas aeruginosa HtpG (PA1596), a homolog of heat shock protein 90, has yet not been characterized in detail. htpG expression in P. aeruginosa strain was elevated upon infection of host cells, and HtpG was released into bacterial culture supernatant. Treatment of dTHP-1 macrophages with recombinant HtpG (rHtpG) increased production of IL-8 in a dose- and time-dependent manner, and this effect was abolished by inhibition of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) p38 signaling. By contrast, the rHtpG-mediated production of IL-8 was increased by suppression of cylindromatosis (CYLD), suggesting that CYLD is a negative regulator of this pathway. The upregulation of expression was coordinated by signals transmitting through toll-like receptor 4 (TLR4) with the aid of CD91. Together, these observations suggest that P. aeruginosa HtpG activates NF-κB, CYLD, and p38 MAPK in a TLR4-and CD91-dependent manner, leading to stimulation of IL-8 production in macrophages.  相似文献   

16.
17.
Cell adhesion, motility, and invasion are regulated by the ligand-binding activity of integrin receptors, transmembrane proteins that bind to the extracellular matrix. Integrins whose conformation allows for ligand binding and appropriate functional activity are said to be in an active state. Integrin activation and subsequent ligand binding are dynamically regulated by the association of cytoplasmic proteins with integrin intracellular domains. In this study, we evaluated the role of EGF in the regulation of the activation state of the α5β1 integrin receptor for fibronectin. The addition of EGF to either A431 squamous carcinoma cells or DiFi colon cancer cells resulted in loss of α5β1-dependent adhesion to fibronectin but no loss of integrin from the cell surface. EGF activated the EGF receptor/ERK/p90RSK and Rho/Rho kinase signaling pathways. Blocking either pathway inhibited EGF-mediated loss of adhesion, suggesting that they work in parallel to regulate integrin function. EGF treatment also resulted in phosphorylation of filamin A (FLNa), which binds and inactivates β1 integrins. EGF-mediated FLNa phosphorylation was completely blocked by an inhibitor of p90RSK and partially attenuated by an inhibitor of Rho kinase, suggesting that both pathways converge on FLNa to regulate integrin function. A431 clonal cell lines expressing non-phosphorylated dominant-negative FLNa were resistant to the inhibitory effects of EGF on integrin function, whereas clonal cell lines overexpressing wild-type FLNa were more sensitive to the inhibitory effect of EGF. These data suggest that EGF-dependent inactivation of α5β1 integrin is regulated through FLNa phosphorylation and cellular contractility.  相似文献   

18.
Activating K-Ras mutations and inactivating mutations of Smad4 are two common genetic alterations that occur in the development and progression of pancreatic ductal adenocarcinomas (PDAC). To further study the individual and combinatorial roles of these two mutations in the pathogenesis of PDAC, immortalized human pancreas nestin postive cells (HPNE) were genetically modified by either expressing oncogenic K-Ras (HPNE/K-Ras), by shRNA knock down of Smad4 (HPNE/ShSmad4) or by creating both alterations in the same cell line (HPNE/K-Ras/ShSmad4). We previously found that expression of oncogenic K-Ras caused an increase in expression of EGFR and loss of Smad4 further enhanced the up regulation in expression of EGFR and that this increase in EGFR was sufficient to induce invasion. Here we further investigated the mechanism that links mutational alterations and EGFR expression with invasion. The increase in EGFR signaling was associated with up regulation of MMP9 and uPA protein and activity. Moreover, the increase in EGFR signaling promoted a nuclear translocation and binding of RelA (p65), a subunit of NF-κB, to the promoters of both MMP-9 and uPA. Treatment of HPNE/K-Ras/ShSmad4 cells with an inhibitor of EGFR reduced EGF-mediated NF-κB nuclear translocation and inhibitors of either EGFR or NF-κB reduced the increase in MMP-9 or uPA expression. In conclusion, this study provides the mechanism of how a combination of oncogenic K-Ras and loss of Smad4 causes invasion and provides the basis for new strategies to inhibit metastases.  相似文献   

19.
αvβ3 integrin represents a novel sensing system which detects herpes simplex virus (HSV) and bacterial constituents. In cooperation with Toll-like receptor 2 (TLR2), it elicits an innate response that leads to activation of type I interferon (IFN), NF-κB, and a specific set of cytokines. We report that this defensive branch is functional in cells which represent experimental models of epithelial, including keratinocytic, and neuronal cells. These are the major targets of HSV in vivo. HSV entered the three cell lines via distinct routes. Hence, the defensive response was independent of the route of virus entry. Soluble gH/gL sufficed to elicit type I IFN and NF-κB activation and represents the viral pathogen-associated molecular pattern (PAMP) of this defense system.  相似文献   

20.
Cui W  Zhao Y  Shan C  Kong G  Hu N  Zhang Y  Zhang S  Zhang W  Zhang Y  Zhang X  Ye L 《FEBS letters》2012,586(6):766-771
Hepatitis B X-interacting protein (HBXIP) is able to enhance migration of breast cancer cells. However, the role of HBXIP in regulation of complement-dependent cytotoxicity (CDC) in breast cancer is not understood. Here, we report that HBXIP contributes to protecting breast cancer cells from CDC by upregulating membrane-bound complement regulatory protein (mCRPs), including CD46, CD55 and CD59. We found that HBXIP upregulated mCRPs through activating p-ERK1/2/NF-κB. Interestingly, the knockdown of CD59 was able to block the HBXIP-enhanced breast tumor growth in animal. Thus, we conclude that HBXIP upregulates CD46, CD55 and CD59 through p-ERK1/2/NF-κB signaling to protect breast cancer from CDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号