共查询到20条相似文献,搜索用时 22 毫秒
1.
Zhiheng Xu Anna C. Maroney Pawel Dobrzanski Nickolay V. Kukekov Lloyd A. Greene 《Molecular and cellular biology》2001,21(14):4713-4724
Neuronal apoptotic death induced by nerve growth factor (NGF) deprivation is reported to be in part mediated through a pathway that includes Rac1 and Cdc42, mitogen-activated protein kinase kinases 4 and 7 (MKK4 and -7), c-Jun N-terminal kinases (JNKs), and c-Jun. However, additional components of the pathway remain to be defined. We show here that members of the mixed-lineage kinase (MLK) family (including MLK1, MLK2, MLK3, and dual leucine zipper kinase [DLK]) are expressed in neuronal cells and are likely to act between Rac1/Cdc42 and MKK4 and -7 in death signaling. Overexpression of MLKs effectively induces apoptotic death of cultured neuronal PC12 cells and sympathetic neurons, while expression of dominant-negative forms of MLKs suppresses death evoked by NGF deprivation or expression of activated forms of Rac1 and Cdc42. CEP-1347 (KT7515), which blocks neuronal death caused by NGF deprivation and a variety of additional apoptotic stimuli and which selectively inhibits the activities of MLKs, effectively protects neuronal PC12 cells from death induced by overexpression of MLK family members. In addition, NGF deprivation or UV irradiation leads to an increase in both level and phosphorylation of endogenous DLK. These observations support a role for MLKs in the neuronal death mechanism. With respect to ordering the death pathway, dominant-negative forms of MKK4 and -7 and c-Jun are protective against death induced by MLK overexpression, placing MLKs upstream of these kinases. Additional findings place the MLKs upstream of mitochondrial cytochrome c release and caspase activation. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(11):1332-1335
While the role of the prolyl isomerase Pin1 in dividing cells has long been recognized, Pin1’s function in postmitotic neurons is poorly understood. We have identified a novel mechanism by which Pin1 mediates activation of the mitochondrial cell death machinery specifically in neurons. This perspective presents a sophisticated signaling pathway that triggers neuronal apoptosis upon JNK-mediated phosphorylation of the BH3-only protein BIMEL at serine 65. Pin1 is enriched at the mitochondria in neurons together with BIMEL and components of a neuron-specific JNK signaling complex and functions as a molecular switch that couples the phosphorylation of BIMEL by JNK to apoptosis specifically in neurons. We discuss how these findings relate to our understanding of the development of the nervous system and the pathogenesis of neurologic disorders. 相似文献
3.
4.
Liang Zhu Maohong Cao Yaohui Ni Lijian Han Aihua Dai Rongrong Chen Xiaojin Ning Xiaorong Liu Kaifu Ke 《Cellular and molecular neurobiology》2017,37(4):607-617
Human transforming growth factor β-activated kinase (TAK1)-binding protein 3 (TAB3) is a regulator of NF-κB which has been mainly found in a variety of cancers. While TAB3 is highly expressed in brain tissue, little is known about the function of TAB3 in central nervous system. Our group established an animal ICH model with autologous whole blood injected into brain, and also a cell ICH model with hemin stimulation. Our Western blot result showed up-regulation of TAB3 during neuronal apoptosis in the model of intracerebral hemorrhage (ICH), which was also approved by immunofluorescence and immunohistochemistry result. Besides, increasing TAB3 level was accompanied by the increased expression of active-caspase-3, active-caspase-8, and decreased expression of Bcl-2. Furthermore, in in vitro study, the level of neuronal apoptosis was decreased by applying TAB3- RNA interference in PC12 cells. All the results above suggested that TAB3 probably participates in the process of neuronal apoptosis following ICH. 相似文献
5.
6.
7.
Hongjian Lu Xiaojin Ning Xuelei Tao Jianbing Ren Xinjian Song Weidong Tao Liang Zhu Lijian Han Tao Tao Jianbin Yang 《Neurochemical research》2016,41(12):3308-3321
The JNKs have been implicated in a variety of biological functions in mammalian cells, including apoptosis and the responses to stress. However, the physiological role of these pathways in the intracerebral hemorrhage (ICH) has not been fully elucidated. In this study, we identified a MAPK kinase kinase (MAPKKK), MEKK1, may be involved in neuronal apoptosis in the processes of ICH through the activation of JNKs. From the results of western blot, immunohistochemistry and immunofluorescence, we obtained a significant up-regulation of MEKK1 in neurons adjacent to the hematoma following ICH. Increasing MEKK1 level was found to be accompanied with the up-regulation of p-JNK 3, p53, and c-jun. Besides, MEKK1 co-localized well with p-JNK in neurons, indicating its potential role in neuronal apoptosis. What’s more, our in vitro study, using MEKK1 siRNA interference in PC12 cells, further confirmed that MEKK1 might exert its pro-apoptotic function on neuronal apoptosis through extrinsic pathway. Thus, MEKK1 may play a role in promoting the brain damage following ICH. 相似文献
8.
9.
10.
11.
12.
PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction. 相似文献
13.
14.
Semaphorins as Mediators of Neuronal Apoptosis 总被引:6,自引:0,他引:6
Anat Shirvan Ilan Ziv Gideon Fleminger Ronit Shina Zhigang He† Irene Brudo Eldad Melamed & Ari Barzilai‡ 《Journal of neurochemistry》1999,73(3):961-971
Shrinkage and collapse of the neuritic network are often observed during the process of neuronal apoptosis. However, the molecular and biochemical basis for the axonal damage associated with neuronal cell death is still unclear. We present evidence for the involvement of axon guidance molecules with repulsive cues in neuronal cell death. Using the differential display approach, an up-regulation of collapsin response mediator protein was detected in sympathetic neurons undergoing dopamine-induced apoptosis. A synchronized induction of mRNA of the secreted collapsin-1 and the intracellular collapsin response mediator protein that preceded commitment of neurons to apoptosis was detected. Antibodies directed against a conserved collapsin-derived peptide provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. Moreover, neuronal apoptosis was inhibited by antibodies against neuropilin-1, a putative component of the semaphorin III/collapsin-1 receptor. Induction of neuronal apoptosis was also caused by exposure of neurons to semaphorin III-alkaline phosphatase secreted from 293EBNA cells. Anti-collapsin-1 antibodies were effective in blocking the semaphorin III-induced death process. We therefore suggest that, before their death, apoptosis-destined neurons may produce and secrete destructive axon guidance molecules that can affect their neighboring cells and thus transfer a "death signal" across specific and susceptible neuronal populations. 相似文献
15.
Alexey E. Granovsky Matthew C. Clark Dan McElheny Gary Heil Jia Hong Xuedong Liu Youngchang Kim Grazyna Joachimiak Andrzej Joachimiak Shohei Koide Marsha Rich Rosner 《Molecular and cellular biology》2009,29(5):1306-1320
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.Raf kinase inhibitory protein (RKIP/PEBP1) is a signaling modulator that regulates key signal transduction cascades in mammalian cells (reviewed in reference 16). A negative regulator of mitogen-activated protein kinase (MAPK) signaling (42), RKIP inhibits Raf kinase by binding directly to Raf-1, thereby preventing the phosphorylation and activation of Raf-1 (8, 38). RKIP functions as a regulator of the spindle checkpoint and promotes genomic stability by preventing MAPK from inhibiting Aurora B kinase (10). Consistent with this role, RKIP suppresses lung metastasis by prostate tumor cells in an orthotopic murine model (15). RKIP may be a general metastasis suppressor for solid tumors, since RKIP expression is low or undetectable in prostate and breast tumors, melanoma, hepatocellular carcinoma, and colorectal tumors (1, 2, 14, 15, 19, 34). Finally, RKIP suppresses NF-κB activation (43), inhibits G protein-coupled receptor (GPCR) kinase 2 (GRK2)-mediated downregulation of GPCRs (28), and potentiates the efficacy of chemotherapeutic agents (5). Thus, RKIP regulates three key mammalian signaling pathways involving MAPK, GPCR, and NF-κB signaling.RKIP is a member of the phosphatidylethanolamine binding protein (PEBP) family, which extends from bacteria to humans and consists of more than 400 proteins (16, 33). X-ray crystallographic studies have demonstrated that highly conserved sequences cluster around a pocket capable of binding anions, including o-phosphorylethanolamine (PE), acetate, and cacodylate (3, 35). This pocket is the only clearly identifiable feature for potential ligand binding within the RKIP architecture. Although the ligand-binding pocket shares homology with phospholipid binding domains, PEBP associates with phospholipid membranes primarily via peripheral, ionic interactions rather than more integrally inserting itself into the membrane (reference 39 and data not shown). The fact that RKIP interacts with protein targets such as Raf-1 and is phosphorylated by other protein kinases raises the possibility that the pocket mediates protein-protein interactions.The physiological role of the ligand-binding pocket is illustrated by studies of plant and yeast PEBPs. In the plant homologue of RKIP, mutation of the conserved DPDxP motif within the pocket (the equivalent of P74L) causes tomato plants to switch developmentally from shoot growth to flowering (32). The Saccharomyces cerevisiae RKIP/PEBP homologue, Tfs1p, functions as a negative regulator of RasGAP (Ira2), leading to upregulation of yeast Ras, activation of adenylyl cyclase, and increased cyclic AMP activation of protein kinase A (6). Yeast Ras signaling is inhibited by the corresponding P74L mutation in the pocket of Tfs1p, blocking Tfs1p interaction with Ira2. These results highlight the functional importance of the pocket among eukaryotic RKIP/PEBP family members. However, the molecular mechanism by which the pocket influences RKIP function and the significance of ligand binding to the pocket are unknown.Previous work has established the phosphorylation-mediated control of RKIP function. RKIP binds Raf-1, inhibiting Raf-1 activation and consequent signaling to MAPK (38, 42). When RKIP residue S153 is phosphorylated by protein kinase C (PKC), which occurs following cell stimulation with growth factors such as epidermal growth factor (EGF) or serum, RKIP can no longer bind to Raf-1, and thus it is inactivated as a Raf-1 inhibitor (8). Phosphorylation at S153 promotes the association of RKIP with, and inhibition of, GRK2, a kinase that phosphorylates and downregulates GPCRs such as the β-adrenergic receptor (28). Thus, S153 phosphorylation of RKIP is a key regulatory element of its association with and inhibition of different targets. The importance of the pocket and that of S153 phosphorylation have been independently established, but it is not clear whether these regulatory elements are functionally linked. Addressing this question is important for advancing our understanding of the molecular mechanism of RKIP function, which is likely to be pertinent to many RKIP/PEBP family members.In the present study, using cellular, biochemical, and structural approaches, we demonstrate that the highly conserved ligand-binding pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP function. Our results suggest that, in contrast to the mechanisms for other pocket-containing single-domain proteins, the structure and/or dynamics of the pocket influences RKIP interaction with and phosphorylation by kinases. This mechanism is likely conserved among RKIP homologues in eukaryotes. 相似文献
16.
Manisha Patel 《Journal of neurochemistry》1998,71(3):1068-1074
Abstract: The objective of this study was to determine whether free radicals play a pathogenic role in neuronal apoptosis. The ability of Mn(III) tetrakis(benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimic, to inhibit staurosporine-induced neuronal apoptosis was tested in mixed cerebrocortical cultures. Staurosporine produced concentration-dependent cell death that was markedly inhibited by MnTBAP. Immunocytochemical analyses of cultures for neuron- and astrocyte-specific markers revealed that high concentrations of staurosporine induced the death of both neurons and astrocytes; both cell types were protected by MnTBAP. A less active congener of MnTBAP failed to protect cells against staurosporine-induced apoptosis. MnTBAP also protected cortical cultures against ceramide-induced apoptosis. These results support a role for oxidative stress in neuronal apoptosis. 相似文献
17.
Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean 总被引:1,自引:0,他引:1
Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants. 相似文献
18.
Tinatin Zurashvili Lluís Cordón-Barris Gerard Ruiz-Babot Xiangyu Zhou Jose M. Lizcano Nestor Gómez Lydia Giménez-Llort Jose R. Bayascas 《Molecular and cellular biology》2013,33(5):1027-1040
3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation. 相似文献