首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study aimed to improve lutein production using a thermo-tolerant lutein-rich microalga Desmodesmus sp. F51. To achieve this goal, four fed-batch cultivation strategies were investigated for CO2 fixation and lutein production of Desmodesmus sp. F51. Among them, Fed-batch IV showed the best performance, giving the highest CO2 fixation rate and lutein productivity of 1582.4 mg/L/d and 3.91 mg/L/d, respectively. Both increasing the light intensity and limiting the nutrients led to a lower carotenoids content in the microalga, with a higher proportion of lutein and lower proportion of β-carotene being obtained in the carotenoids. The carotenoid present in the biomass was mainly lutein, accounting for 50–66% of total carotenoids. Repeated operations of the Fed-batch IV strategy could effectively improve CO2 fixation and lutein production of Desmodesmus sp. F51, giving the best results of 1826.0 mg/L/d, and 4.61 mg/L/d, respectively. This performance is better than most of the previously reported values.  相似文献   

2.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

3.
This study aimed to improve the commercial viability of microalgae-based lutein production using an isolated microalga Scenedesmus obliquus CNW-N possessing a high lutein content of over 0.25%. Effective lutein extraction protocols, appropriate storage methods, and purification procedures were developed. Disruption of microalgae cells was most efficient with a bead-beater. The conventional saponification step was modified to reduce the overall extraction time by 24 h. Diethyl ether exhibited the best lutein extraction efficiency. Storage of the lutein extract at low temperature (4 or −20 °C) with antioxidant addition (around 0.01% BHT) can maintain 90% lutein stability after 80 days. Addition of a suitable amount of the antioxidant could promote the stability of lutein extracts under the exposure of light. The protocol developed in this work allows efficient lutein extraction from S. obliquus CNW-N at a lower cost. Further purification was employed to elevate the purity of lutein and its commercial value.  相似文献   

4.
The performance of a macroalgae (Sargassum sp.), a laboratory-cultivated microalgae (Chlorococcum sp.) and a commercially available granulated activated carbon (GAC) for the removal of copper (Cu) and chromium (Cr) from aqueous solutions was evaluated using batch experiments. Kinetic and isotherm experiments were done at the optimal pH of 4.5 ± 0.1 for Cu (II) and 2.0 ± 0.1 for Cr (total). The equilibrium isotherms were determined and the results were analyzed using the Langmuir and Freundlich models. The best Cu removal performance was observed on Sargassum at a maximum removal of 87.3% obtained for an initial concentration of 20 mg L?1 Cu. The maximum uptake capacities for Cu (II) were 71.4, 19.3 and 11.4 mg g?1 of Sargassum, Chlorococcum and GAC, respectively. The biosorbents were also able to remove appreciable amounts of Cr, again with Sargassum showing maximum uptake capacity over the other materials. Kinetic studies also reveal that the removal rate is faster for both metals in Sargassum. Tests with an actual wastewater confirm the maximum uptake capacity of Cu by Sargassum. In all experiments the Sargassum biofilter outperformed GAC, which makes it a promising low-cost alternative to conventional filtration materials for wastewater treatment.  相似文献   

5.
This paper analyzes the feasibility of the autotrophic production of vegetative cells of Haematococcus pluvialis under conditions resembling outdoors. The experimental design simulates in laboratory with artificial light an outdoors circadian cycle similar to solar illumination. The influence of the irradiance and nutrient concentration on the growth rate and carotenoids accumulation in batch cultures is studied. The cultures were not photoinhibited even under the maximum irradiance-level tested (2500 μE m−2 s−1). Growth was kept nutrient-limited by using nutrients concentration below the standard inorganic medium (10 mM nitrate). When no nutrient-limitation occurs, the growth rate and biomass productivity measured 0.57 day−1 and 0.28 g L−1 day−1, respectively, were similar to the maximum values reported, regardless of the nutritional regime: autotrophic, mixotrophic or heterotrophic. On the other hand, carotenogenesis was only observed under nutrient-limiting conditions when the medium strength was reduced to 0.2- or 0.3-fold of the standard medium. On the other hand, carotenogenesis ceased under severe nutrient deprivation (i.e. nutrient strength of 0.1-fold of the standard medium). The growth rate and the carotenoids accumulation rate were demonstrated to be a function of the average irradiance inside the culture, and of the nutrient content of the medium. A mathematical model for the observed behaviour is proposed. This model was adequate to fit all the experimental data obtained. The values determined for the characteristics parameters are in agreement with those found by other authors. Therefore, the proposed model can be a useful tool for the design and management of Haematococcus cultures, and could allow improving the yield of this production process.  相似文献   

6.
Biological treatment of synthetic wastewater containing Cu(II) ions was realized in an activated sludge unit with pre-adsorption of Cu(II) onto powdered waste sludge (PWS). Box-Behnken experimental design method was used to investigate Cu(II), chemical oxygen demand (COD) and toxicity removal performance of the activated sludge unit under different operating conditions. The independent variables were the solids retention time (SRT, 5–30 d), hydraulic residence time (HRT, 5–25 h), feed Cu(II) concentration (0–50 mg L?1) and PWS loading rate (0–4 g h?1) while percent Cu(II), COD, toxicity (TOX) removals and the sludge volume index (SVI) were the objective functions. The data were correlated with a quadratic response function (R2 = 0.99). Cu(II), COD and toxicity removals increased with increasing PWS loading rate and SRT while decreasing with the increasing feed Cu(II) concentration and HRT. Optimum conditions resulting in maximum Cu(II), COD, toxicity removals and SVI values were found to be SRT of 30 d, HRT 15 h, PWS loading rate 3 g h?1 and feed Cu(II) concentration of less than 30 mg L?1.  相似文献   

7.
Meriem Alami  Dusan Lazar  Beverley R. Green 《BBA》2012,1817(9):1557-1564
Aureococcus anophagefferens is a picoplanktonic microalga that is very well adapted to growth at low nutrient and low light levels, causing devastating blooms (“brown tides”) in estuarine waters. To study the factors involved in long-term acclimation to different light intensities, cells were acclimated for a number of generations to growth under low light (20 μmol photons m? 2 s? 1), medium light (60 or 90 μmol photons m? 2 s? 1) and high light (200 μmol photons m? 2 s? 1), and were analyzed for their contents of xanthophyll cycle carotenoids (the D pool), fucoxanthin and its derivatives (the F pool), Chls c2 and c3, and fucoxanthin Chl a/c polypeptides (FCPs). Higher growth light intensities resulted in increased steady state levels of both diadinoxanthin and diatoxanthin. However, it also resulted in the conversion of a significant fraction of fucoxanthin to 19′-butanoyloxyfucoxanthin without a change in the total F pool. The increase in 19′-butanoyloxyfucoxanthin was paralleled by a decrease in the effective antenna size, determined from the slope of the change in F0 as a function of increasing light intensity. Transfer of acclimated cultures to a higher light intensity showed that the conversion of fucoxanthin to its derivative was a relatively slow process (time-frame of hours). We suggest the replacement of fucoxanthin with the bulkier 19′-butanoyloxyfucoxanthin results in a decrease in the light-harvesting efficiency of the FCP antenna and is part of the long-term acclimative response to growth at higher light intensities.  相似文献   

8.
Fermentation kinetics of growth and β-carotene production by Rhodotorula glutinis DM28 in batch and continuous cultures using fermented radish brine, a waste generated from fermented vegetable industry, as a cultivation medium were investigated. The suitable brine concentration for β-carotene production by R. glutinis DM28 was 30 g l?1. Its growth and β-carotene production obtained by batch culture in shake flasks were 2.2 g l?1 and 87 μg l?1, respectively, while, in a bioreactor were 2.6 g l?1 and 186 μg l?1, respectively. Furthermore, its maximum growth rate and β-carotene productivity in continuous culture obtained at the dilution rate of 0.24 h?1 were 0.3 g l?1 h?1 and 19 μg l?1 h?1, respectively, which were significantly higher than those in the batch. Therefore, improved growth rate and β-carotene productivity of R. glutinis in fermented radish brine could be accomplished by continuous cultivation.  相似文献   

9.
A Cu/Zn-superoxide dismutase (SOD) was characterized for the first time from Beauveria bassiana by gene cloning, heterogeneous expression and function analysis. This 154-aa SOD (BbSod1) was deduced from a 465-bp gene cloned, showing 49–96% sequence identity to Cu/Zn-SODs from other 57 fungi. BbSod1 and its form engineered with two site-directed mutations P143S and P145L (BbSod1-Mut) or a fused copper chaperon Lys7 (BbSod1-Lys7) were expressed well in Escherichia coli. Crude extracts and purified BbSod1-Mut from cell cultures exhibited much higher antioxidation activities than the counterparts of BbSod1-Lys7 whereas BbSod1 showed no substantial activity. The engineered enzymes were best induced by overnight incubation at 20 °C in Luria-Bertani medium including 2.5 mM Cu2+, 0.5 mM Zn2+ and 0.5 mM isopropyl-d-thiogalactopyranoside after 5-h growth to log-phase at 37 °C. Our results highlight alternative means to producing highly active fungal Cu/Zn-SOD in E. coli by making use of the two site-directed mutations without chaperon.  相似文献   

10.
Maximal activity of the immobilized d-psicose 3-epimerase from Agrobacterium tumefaciens on Duolite A568 beads was achieved at pH 9.0 and 55 °C with borate, and at pH 8.5 and 50 °C without borate. The half-lives of the immobilized enzyme at 50 °C with and without borate were increased 4.2- and 128-fold compared to that of the free enzyme without borate, respectively. The immobilized enzyme with borate produced 441 g l?1 psicose from 700 g l?1 fructose at pH 9.0 and 55 °C, whereas 193 g l?1 psicose was produced without borate at pH 8.5 and 50 °C after 120 min in a batch reaction. The immobilized enzyme in a packed-bed bioreactor without borate was produced continuously 325 g l?1 psicose from 500 g l?1 fructose at a dilution rate of 1.62 h?1 over a 236 h period with productivity of 527 g l?1 h?1 while that without borate produced 146 g l?1 psicose at 4.15 h?1 over a 384-h period with productivity of 606 g l?1 h?1. The operational half-lives of the enzyme with and without borate in the bioreactor were 601 and 645 h, respectively. In the present study, psicose was produced stably with high productivity using the immobilized d-psicose 3-epimerase in the presence of borate.  相似文献   

11.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

12.
Polyhydroxyalkanoates (PHAs) have been recognized as good substitutes for the non-biodegradable petrochemically produced polymers. However, their high (real or estimated) current production cost limits their industrial applications. This work exploits two strategies to enhance PHAs substitution potential: the increase in PHA volumetric productivity in high density cultures and the use of waste glycerol (GRP), a by-product from the biodiesel industry, as primary carbon source for cell growth and polymer synthesis. Cupriavidus necator DSM 545 was used to accumulate poly(3-hydroxybutyrate) (P(3HB)) from GRP and from commercial glycerol (PG) as control substrate. On PG, productivities between 0.6 gPHB L?1 h?1 and 1.5 gPHB L?1 h?1 were attained. The maximum cell DW was 82.5 gDW L?1, the P(3HB) content being 62%. When GRP was used, 68.8 gDW L?1 with a P(3HB) accumulation of 38% resulting in a final productivity of 0.84 gPHB L?1 h?1 was obtained. By decreasing the biomass concentration at which accumulation was triggered, a productivity of 1.1 gPHB L?1 h?1 (50% P(3HB), w/w) was attained using GRP. P(3HB) molecular weights (Mw) ranged from 7.9 × 105 to 9.6 × 105 Da.  相似文献   

13.
Chlorella vulgaris was cultivated in two different 2.0 L-helicoidal and horizontal photobioreactors at 5 klux using the bicarbonate contained in the medium and ambient air as the main CO2 sources. The influence of bicarbonate concentration on biomass growth as well as lipid content and profile was first investigated in shake flasks, where the stationary phase was achieved in about one half the time required by the control. The best NaHCO3 concentration (0.2 g L−1) was then used in both photobioreactors. While the fed-batch run performed in the helicoidal photobioreactor provided the best result in terms of biomass productivity, which was (84.8 mg L−1 d−1) about 2.5-fold that of the batch run, the horizontal configuration ensured the highest lipid productivity (10.3 mg L−1 d−1) because of a higher lipid content of biomass (22.8%). These preliminary results suggest that the photobioreactor configuration is a key factor either for the growth or the composition of this microalga. The lipid quality of C. vulgaris biomass grown in both photobioreactors is expected to meet the standards for biodiesel, especially in the case of the helicoidal configuration, provided that further efforts will be made to optimize the conditions for its production as a biodiesel source.  相似文献   

14.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

15.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1.  相似文献   

16.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

17.
Cell growth and lipid production of a marine microalga Nannochloropsis oceanica DUT01 were investigated, and fresh medium replacement with different ratios to promote long term cell growth and lipid accumulation was also tested. The highest lipid content reached 64% in nitrogen deplete f/2 medium containing 37.5 mg/L NaNO3 combined with 1/5 fresh medium replacement, however, the highest lipid titer (0.6 g/L) and lipid productivity (31 mg/L/d) were achieved using BG11 medium containing 1.5 g/L NaNO3, taking advantage of 1/5 fresh medium replacement as well, which corresponded to the maximum biomass production of 1.4 g/L, highlighting the importance of high biomass accumulation for efficient lipid production. When biomass compositions were monitored throughout the culture, decreased protein content was found to be coupled with increased lipid production, whereas relatively stable carbohydrate content was observed. The fatty acids in the lipid of N. oceanica DUT01 comprise over 65% saturated fatty acids and monounsaturated acids (i.e. palmitic acid (C16:0) and oleic acid (C18:1)), suggesting that N. oceanica DUT01 is a promising candidate for biodiesel production. Interestingly, very high content of hexadecadienoic acid (C16:2, about 26–33%) was produced by DUT01, which distinguished this microalga with other microalgae strains reported so far.  相似文献   

18.
Laccase from Trametes versicolor was immobilized on Amberlite IR-120 H beads. Maximum immobilization obtained was 78.7% at pH = 4.5 and temperature T = 45 °C. Kinetic parameters, Km and Vmax values, were determined respectively as 0.051 mM and 2.77 × 10?2 mM/s for free and 4.70 mM and 5.27 × 10?3 mM/s for immobilized laccase. The Amberlite–laccase system showed a 30% residual activity after 7 cycles. On the other hand, the loss of activity for free laccase after 7 days of storage at 4 °C was 18.5% in comparison to Amberlite–laccase system with a loss of 1.4%, during the same period. Improved operational, thermal and storage stabilities of the immobilized laccase were obtained compared to the free counterpart. Therefore, the use of low-cost matrices, like Amberlite for enzyme immobilization represents a promising product for enzymatic industrial applications.  相似文献   

19.
The phytase of Sporotrichum thermophile was purified to homogeneity using acetone precipitation followed by ion-exchange and gel-filtration column chromatography. The purified phytase is a homopentamer with a molecular mass of ~456 kDa and pI of 4.9. It is a glycoprotein with about 14% carbohydrate, and optimally active at pH 5.0 and 60 °C with a T1/2 of 16 h at 60 °C and 1.5 h at 80 °C. The activation energy of the enzyme reaction is 48.6 KJ mol?1 with a temperature quotient of 1.66, and it displayed broad substrate specificity. Mg2+ exhibited a slight stimulatory effect on the enzyme activity, while it was markedly inhibited by 2,3-butanedione suggesting a possible role of arginine in its catalysis. The chaotropic agents such as guanidinium hydrochloride, urea and potassium iodide strongly inhibited phytase activity. Inorganic phosphate inhibited enzyme activity beyond 3 mM. The maximum hydrolysis rate (Vmax) and apparent Michaelis–Menten constant (Km) for sodium phytate were 83 nmol mg?1 s?1 and 0.156 mM, respectively. The catalytic turnover number (Kcat) and catalytic efficiency (Kcat/Km) of phytase were 37.8 s?1 and 2.4 × 105 M?1 s?1, respectively. Based on the N-terminal and MALDI–LC–MS/MS identified amino acid sequences of the peptides, the enzyme did not show a significant homology with the known phytases.  相似文献   

20.
In order to examine the effect of salinity on Cu accumulation from a naturally incorporated diet, oysters (Crassostrea virginica) were exposed in sea water for 96 days to four waterborne [Cu]: 2.9 ± 0.7 (control), 4.3 ± 0.6, 5.4 ± 0.5, and 10.7 ± 1.0 µg L? 1. After 96 days, the control whole body [Cu] increased from 2.1 ± 0.5 to 9.1 ± 1.1 µg g? 1 w.w. and the highest [Cu] was 163.4 ± 27.1 µg g? 1 w.w. in the oysters. Despite large differences in tissue [Cu], there was no effect on the fraction of trophically available metal in the oyster suggesting that trophic transfer will correlate well with tissue [Cu]. The control and highest [Cu] oysters became diet for killifish (Fundulus heteroclitus) in fresh and seawater for 40 days. The two diets contained 84.7 ± 5.1 and 850.5 ± 8.8 µg Cu g? 1 d.w. Fish were fed a combined diet of oyster and a pellet supplement (20.5 ± 1.0 µg Cu g? 1 d.w.) both at 5% body mass day? 1. In killifish, Cu increased ~ 7% in gills and 100% in intestines after 6 weeks of exposure to the high Cu diet. No other tissues accumulated Cu above control levels. An 11-fold difference free Cu2+ concentrations was predicted in intestinal fluid between fresh and sea water, but there was no corresponding effect of salinity on intestinal Cu accumulation suggesting that Cu is not accumulated as the free ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号