首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Infection of quiescent cells by human cytomegalovirus (HCMV) elicits severe cell cycle deregulation, resulting in a G1/S arrest, which can be partly attributed to the inactivation of the anaphase-promoting complex (APC). As we previously reported, the premature phosphorylation of its coactivator Cdh1 and/or the dissociation of the core complex can account for the inactivation. We have expanded on these results and further delineated the key components required for disabling the APC during HCMV infection. The viral protein kinase UL97 was hypothesized to phosphorylate Cdh1, and consistent with this, phosphatase assays utilizing a virus with a UL97 deletion mutation (ΔUL97 virus) indicated that Cdh1 is hypophosphorylated at early times in the infection. Mass spectrometry analysis demonstrated that UL97 can phosphorylate Cdh1 in vitro, and the majority of the sites identified correlated with previously characterized cyclin-dependent kinase (Cdk) consensus sites. Analysis of the APC core complex during ΔUL97 virus infection showed APC dissociation occurring at the same time as during infection with wild-type virus, suggesting that the UL97-mediated phosphorylation of Cdh1 is not required for this to occur. Further investigation of the APC subunits showed a proteasome-dependent loss of the APC5 and APC4 subunits that was temporally associated with the disassembly of the APC. Immediate early viral gene expression was not sufficient for the degradation of APC4 and APC5, indicating that a viral early gene product(s), possibly in association with a de novo-synthesized cellular protein(s), is involved.Human cytomegalovirus (HCMV), a highly prevalent β-herpesvirus, can cause serious birth defects and disease in immunocompromised individuals, and it may be associated with cancer and cardiovascular disease (53). Viral gene expression is temporally regulated and is dependent on many cellular factors for a productive infection. Immediate early (IE) genes are expressed by 2 h postinfection (p.i.) and transactivate the early genes required for viral DNA replication. The expression of the late genes, which encode proteins involved in virion maturation and egress, is dependent on viral DNA replication.The virus has adopted different strategies for altering the cellular environment to make it more conducive to productive infection, including the stimulation of host cell DNA replication pathways, cell cycle deregulation and arrest, immune evasion, and inhibition of apoptosis (53). Although HCMV encodes its own DNA polymerase, it is dependent on other cellular resources for DNA replication. Infection of quiescent cells induces passage toward S phase such that the host cell is stimulated to generate proteins and DNA precursors necessary for genome replication; however, entry into S phase and cellular DNA replication are subsequently blocked and the cell arrests in G1/S (1, 10, 11, 14, 30, 45). Cellular resources are thereby presumably free to be efficiently utilized for viral replication. Cell cycle arrest by HCMV is achieved in part through the misregulation of several cell cycle proteins, including the phosphorylation and accumulation of the Rb family pocket proteins, upregulation of cyclins E and B and their associated kinase activities, inhibition of cyclin A expression, stabilization of p53, and accumulation of Cdc6 and geminin, which inhibits licensing of the cellular origins of DNA replication (8, 17, 30, 49, 54, 65). Some of these cell cycle defects can be attributed to a deregulation of the anaphase-promoting complex (APC) (8, 72, 79, 80), an E3 ubiquitin ligase that is responsible for the timely degradation of cell cycle proteins and mitotic cyclins to promote cycle progression from mitosis through G1 to S phase (58, 74). As the APC also appears to be a common target among other viruses, including the chicken anemia virus, adenoviruses, and poxviruses (23, 36, 52, 70), understanding the mechanisms leading to its inactivation during viral infection has been of great interest.As we have previously reported, multiple mechanisms may be involved in disabling the APC during HCMV infection (72), which is not surprising given the complexity of its structure and regulation (for a review, see references 58 and 74). The APC is a large multisubunit complex consisting of at least 11 conserved core subunits, as well as other species-specific subunits. In metazoans, the APC2 and APC11 subunits form the catalytic core, and along with APC10, provide the platform for binding the E2 ubiquitin-conjugating enzyme. Each of the APC3, APC8, APC6, and APC7 subunits contain multiple copies of the tetratricopeptide repeat (TPR) motif and together make up the TPR subcomplex, which provides a platform of protein interaction surfaces for binding the coactivators (i.e., Cdh1 and Cdc20) and various substrates. These two subcomplexes are bridged by the large scaffolding subunit APC1, with the TPR subcomplex tethered to APC1 through APC4 and APC5. The binding between APC1, APC4, APC5, and APC8 is also interdependent, such that the loss of one subunit decreases the association of the other three (71).The APC is activated by either of its coactivators, Cdh1 or Cdc20, which also function in recruiting specific substrates to the APC during different phases of the cell cycle. The phosphorylation of several APC subunits at the onset of mitosis, including APC1 and the TPR subunits, by cyclin B/cyclin-dependent kinase 1 (Cdk1) and Plk1 allows the binding of Cdc20 and subsequent activation of the APC (APCCdc20) (19, 37), whereas the binding and activation of the complex by Cdh1 is inhibited through its phosphorylation by cyclin B/Cdk1 (9, 29, 38, 83). As cells pass the spindle assembly checkpoint, APCCdc20 ubiquitinates securin (to allow for sister chromatid separation) and cyclin B for degradation by the proteasome (42, 67). The subsequent inactivation of Cdk1 and activation of mitotic phosphatases during late anaphase relieves the inhibitory phosphorylation on Cdh1, presumably by Cdc14 (6, 38, 44), which then allows Cdh1 to bind and activate the APC (APCCdh1). APCCdh1 ubiquitinates Cdc20 and mitotic cyclins for degradation to facilitate mitotic exit and maintains their low levels, along with S-phase regulators (e.g., Cdc6, geminin, etc.), during G1 (16, 50, 59, 63). The inactivation of APCCdh1 as cells enter S phase may be mediated in part through the phosphorylation of Cdh1 by cyclin A/Cdk2 (46) and Cdh1 binding to the inhibitor Emi1 (25). The inactivation of Cdh1 by phosphorylation has been shown in all organisms studied thus far (e.g., yeast, Drosophila, plants, mammals, etc.), and mutants mimicking constitutively phosphorylated Cdh1 on Cdk consensus sites can neither bind nor activate the APC in vivo or in vitro (9, 29, 38, 69, 83).During HCMV infection of fibroblasts in G0/G1, however, Cdh1 becomes prematurely phosphorylated in a Cdk-independent manner and no longer associates with the APC (72). This dissociation does not appear to be due to an overexpression of Emi1 (79). Cdc20 also can no longer associate with the APC (79), suggesting a defect in the APC core. We have further shown that the APC core complex disassembles during the infection, with the TPR subunits (i.e., APC3, APC7, and APC8) and APC10 localizing to the cytosol, while APC1 remains nuclear (72). Interestingly, both the phosphorylation of Cdh1 and the dissociation of the APC occur at similar times during HCMV infection. Although either of these mechanisms could render the APC inactive, it was unclear whether these processes are linked or represent independent (or redundant) pathways. The causative factor(s) in mediating these events and the question of whether such a factor(s) was of cellular or viral origin also remained unresolved.On the basis of the results of several recent studies (26, 32, 62), the viral protein kinase UL97 emerged as a likely candidate for involvement in the phosphorylation of Cdh1. Conserved among herpesviruses, UL97 functions in viral genome replication (7, 32, 81) and in nuclear egress of viral capsids (21, 39, 48). UL97 is present in the tegument of the virus particle (76) and is also expressed de novo with early kinetics (i.e., detectable by 5 h p.i. by Western blot assay), with increased expression at later times of the infection (51, 76, 77). UL97 is a serine/threonine (S/T) protein kinase (22), and recent studies have further characterized it as a Cdkl mimic, with predicted structural similarity to Cdk2 (64) and common substrates. UL97 has been shown to phosphorylate in vitro nuclear lamin A/C (21), the carboxyl-terminal domain of RNA polymerase II (5), the translation elongation factor 1δ (EF1δ) (33), and Rb (26, 62) on sites targeted by Cdks, and there is considerable evidence that UL97 phosphorylates lamin A/C, EF1δ, and Rb on these sites in infected cells as well (21, 26, 33, 62). Given that cyclin A/Cdk2 and cyclin B/Cdk1 complexes normally phosphorylate Cdh1, thus preventing its association with the APC, we hypothesized that UL97 phosphorylates Cdh1 during HCMV infection.In the present study, we provide further mechanistic details of the events and players involved in inactivating the APC during HCMV infection. Evidence that UL97 is the viral factor mediating the phosphorylation of Cdh1 was obtained. However, APC disassembly still occurred at similar times in ΔUL97 and wild-type virus infections, indicating that UL97-mediated phosphorylation of Cdh1 is not required for this event. The inactivation of the APC core complex is further attributed to the loss of the APC5 and APC4 subunits early during the infection. The degradation of these subunits is proteasome dependent and requires de novo synthesis of viral early or cellular proteins. While the primary mechanism of inactivation appears to be the dissociation of the complex and the targeted loss of APC5 and APC4, phosphorylation of Cdh1 may provide a small kinetic advantage and backup mechanism for disabling the APC.  相似文献   

2.
Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3ɛ and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.Morphological switching is a unique attribute of all dimorphic fungi, which alternate between budding and filamentous growth. In some cases, as with mating, this is a prerequisite for genetic diversity for this subfamily of fungi. In addition, many dimorphic fungal pathogens rely on this ability in order to effectively invade their host. In general, the transition between these alternate life forms means a complete turnover of cellular and proteomic components, which often involves cell cycle arrest and/or cytoskeletal rearrangement. Although the cellular proteomes associated with these two processes share many components, there are both temporal and spatial regulations that are manifested during the transitional phase (4).Temporal-spatial regulation of the proteome during the dimorphic transition requires cooperation and synchronized communication among different regulatory pathways. Two highly intricate, yet well-established, signaling cascades that regulate fungal morphogenesis are the mitogen-activated protein kinase (MAPK) (34, 46) and protein kinase A pathways (11). These signaling cascades detect and perpetuate extracellular stimuli, e.g., pheromones and nutrients, which lead to phase transitions in dimorphic fungi. Although the mechanisms are not as fully understood, members of two highly conserved families of proteins, Rho/Rac GTPases and 14-3-3 proteins, have also been shown to control filamentation. Constituents of the Rho/Rac protein family have been shown to regulate actin organization (26, 35, 36), cytokinesis (3, 49, 52), cell integrity (42, 56), pathogenicity (29), signal transduction (22, 44, 56), and cell migration (8). Their activity is dependent upon the reversible binding of guanine nucleotides catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) (15, 22, 23, 25, 44). Upon activation, Rho-GTPases stimulate downstream effector proteins such as p21-activated kinases (PAKs) (29, 51) or Rho kinase (ROCK) (36). Based on in silico analysis of the genome sequence, the fungal pathogen of maize, Ustilago maydis, contains six different Rho/Rac encoding genes: cdc42, rac1, and four additional genes predicted to encode Rho-like proteins (20). Of these, only the roles of Cdc42 and Rac1 have been examined in depth. Cdc42 was shown to regulate cytokinesis, while Rac1 regulates hyphal development in U. maydis (26). We examine here the place of a Rho1 homologue, Rho1, in U. maydis cell morphology, polarity, and development.Similarly, the highly conserved, ubiquitously expressed 14-3-3 proteins that are found in most eukaryotes have also been shown to contribute to cellular differentiation and cytoskeletal organization. Like Rho-GTPases, 14-3-3 proteins play multiple roles, in cytoskeletal function, cell cycle regulation, apoptosis, and the regulation of a variety of signaling pathways (17, 19, 33, 50). These acidic proteins have been found in each cellular compartment and most organisms examined possess multiple isoforms: seven isoforms are found in mammals, and as many as fifteen isoforms have been identified in plants (31). Interestingly, the yeast Saccharomyces cerevisiae, the fruit fly, Drosophila melanogaster, and the nematode, Caenorhabditis elegans, each possess only two 14-3-3 isoforms (50), while Candida albicans contains a single isoform (37). They function typically by binding their particular ligands at phosphoserine or phosphothreonine residues (50). It is not clear what 14-3-3 proteins do in the processes mentioned above, whether they act as scaffolds or effectors. Inspection of the U. maydis genome sequence revealed that this organism could be ideal for the study of 14-3-3 proteins because, unlike most other organisms, the U. maydis genome contains only a single 14-3-3 homologue. Due to its predicted binding of phosphorylated proteins, we named this homologue Pdc1 (for phosphorylation domain coupling protein [10]). Recently, the protein (also designated Bmh1 [32]) was also shown to be involved in cell cycle regulation.Despite the functional differences between Rho-GTPases and 14-3-3 proteins, we provide evidence that members of these two families participate in the same regulatory cascade(s) that control morphogenesis in the dimorphic fungus U. maydis. We are able to demonstrate that both Pdc1 and Rho1 are essential for cell viability. In addition, overexpression of Rho1 led to the reduction of filamentation. Overexpression of Rac1 triggers filamentation in U. maydis (13, 29). We show here that deleting Rac1 eliminates the lethal effect imposed by either Rho1 or Pdc1 depletion. Our results have led us to predict that both Rho1 and Pdc1 are negative regulators of Rac1 in U. maydis and that they play important roles in polarized growth and cytokinesis.  相似文献   

3.
Limiting genome replication to once per cell cycle is vital for maintaining genome stability. Inhibition of cyclin-dependent kinase 1 (CDK1) with the specific inhibitor RO3306 is sufficient to trigger multiple rounds of genome reduplication. We demonstrated that although anaphase-promoting complex/cyclosome (APC/C) remained inactive during the initial G2 arrest, it was activated upon prolonged inhibition of CDK1. Using cellular biosensors and live-cell imaging, we provide direct evidence that genome reduplication was associated with oscillation of APC/C activity and nuclear-cytoplasmic shuttling of CDC6 even in the absence of mitosis at the single-cell level. Genome reduplication was abolished by ectopic expression of EMI1 or depletion of CDC20 or CDH1, suggesting the critical role of the EMI1-APC/C axis. In support of this, degradation of EMI1 itself and genome reduplication were delayed after downregulation of PLK1 and β-TrCP1. In the absence of CDK1 activity, activation of APC/C and genome reduplication was dependent on cyclin A2 and CDK2. Genome reduplication was then promoted by a combination of APC/C-dependent destruction of geminin (thus releasing CDT1), accumulation of cyclin E2-CDK2, and CDC6. Collectively, these results underscore the crucial role of cyclin A2-CDK2 in regulating the PLK1-SCFβ-TrCP1-EMI1-APC/C axis and CDC6 to trigger genome reduplication after the activity of CDK1 is suppressed.Limiting genome replication to once per cell cycle is critical for maintaining genome stability and suppressing tumorigenesis (reviewed in reference 18). DNA replication is a biphasic process consisting of origin licensing and origin firing. During late mitosis to early G1 phase, origins are licensed by orderly loading of prereplicative complex components, including ORC, CDT1, CDC6, and MCM2-7 (reviewed in reference 3). Origin licensing occurs in a biochemical environment characterized by low activity of cyclin-cyclin-dependent kinase (CDK) and high activity of anaphase-promoting complex/cyclosome (APC/C) (reviewed in reference 51). Firing of the origins is coordinated by phosphorylation carried out by cyclin-CDK and DBF4-CDC7 and the binding of other replication factors, including CDC45, MCM10, RPA, and DNA polymerase (reviewed in reference 58).Critical roles in replication have been attributed to both cyclin A and cyclin E, but the distinct roles performed by the two cyclins remain incompletely understood. Cyclin A is especially interesting among the cyclins because of its association with multiple CDKs (CDK1 and CDK2) and its proposed functions in multiple points of the cell cycle (S phase and mitosis). In S phase, cyclin A is believed to be involved in the loading of CDC45 onto origins. Cyclin A is also involved in blocking the reloading of fired origins (reviewed in reference 43). CDT1 is targeted to degradation after phosphorylation by cyclin-CDK in SCFSKP2- or CUL4-DDB1-mediated mechanisms (15). Geminin accumulates during S phase and inactivates the remaining CDT1 (32). Moreover, CDC6 is phosphorylated by cyclin-CDK and translocated out of the nucleus. Finally, ORC1 (the largest subunit of the ORC) is inactivated either by polyubiquitination by SCFSKP2 and degradation by the proteasome (38) or by monoubiquitination and dissociation from the chromatin (29). Thus, the high cyclin-CDK and low APC/C activities during S phase prevent the formation of the prereplicative complex and reduplication. The system is reset during the next mitosis, when APC/C is activated and degrades cyclins and geminin, allowing the prereplicative complex to form again.Genome reduplication generates polyploid cells. A growing body of evidence indicates that polyploidization can initiate chromosomal instability and aneuploidy. A seminal study by Fujiwara et al. (16) indicates that tetraploids can be generated by transient blocking of cytokinesis in p53-null mouse mammary epithelial cells. Importantly, tetraploidization promotes aneuploidy and tumorigenesis (16). Another study reported that chromosome nondisjunction (both copies of a chromosome segregate to the same daughter cells) leads to binucleated tetraploids by promoting cleavage furrow regression; the tetraploid cells then become aneuploidy through further divisions (48). This and other studies provide strong evidence of the importance of tetraploidization as an early step in tumorigenesis (reviewed in reference 53).While rereplication is stringently prevented in the normal cell cycle, multiple rounds of genome reduplication, called endoreduplication, occur in cell types such as megakaryocytes, trophoblast giant cells, numerous plant cells (26), and in the salivary glands of Drosophila melanogaster (49). In yeasts, different levels of a single CDK are believed to allow origin licensing and firing and prevent relicensing and mitosis (reviewed in reference 45). In contrast, the complex interplay between different cyclin-CDK complexes and licensing factors to prevent genome reduplication in higher eukaryotes remains to be fully characterized.Cyclin E is required for the endoreduplication cycles in Drosophila cells (14, 31, 57), trophoblasts, and megakaryocytes (20, 40). In fact, ectopic expression of cyclin E can promote endoreduplication in megakaryocytes (19). In contrast, although a decrease in cyclin A promotes endoreduplication in plant cells (24, 62) and Drosophila cells (39), it does not appear to be the case for megakaryocytic cell lines (19, 65, 66). A decrease in cyclin B1, but not cyclin A2, has been reported to be required for endoreduplication in megakaryocytes (66). Precisely which cyclin-CDK complexes are involved in safeguarding rereplication remains largely unresolved. Rereplication induced by EMI1 depletion is correlated with a reduction of cyclin A2 and cyclin B1, which can be rescued with nondestructible cyclin A2 (34). However, rereplication in HeLa cells is induced only weakly by cyclin A2 depletion, but it occurs more efficiently after codepletion of geminin (34). Conversely, expression of cyclin A2 (but not cyclin E) potentiates the rereplication induced by CDC6 and CDT1 in mammalian cells (56).In contrast to the complexity and uncertainty about the different cyclins in DNA reduplication, the central role of inactivation of mitotic CDK1 is generally accepted. This has been observed in a wide range of endoreduplication cycles, including those in maize endosperm (21), Drosophila cells (49), trophoblasts (54), and megakaryocytes (65). Likewise, extensive DNA reduplication can be triggered by disruption of CDK1 in a mammalian cell line (7, 25, 28). The molecular basis of how CDK1 inactivation contributes to genome reduplication remains to be defined.The prevailing view is that APC/C plays a salient role in preventing rereplication. The orthologs of CDH1 in plant cells (Ccs52A) and in Drosophila cells (fzr) are both essential for endoreduplication (26, 49). Unscheduled activation of APC/C reduces the concentrations of mitotic cyclins and geminin, resulting in rereplication (12, 34). An extra level of regulation provided by the APC/C inhibitor EMI1 has been uncovered recently. EMI1 begins to accumulate at the G1/S transition, thereby inactivating APC/C and allowing the accumulation of cyclins and geminin (46). Accordingly, depletion of EMI1 with RNA interference promotes unscheduled APC/C activation and rereplication (12, 34).In this study, we utilized a specific CDK1 chemical inhibitor to induce whole-genome reduplication in cancer cells. We found that genome reduplication was associated with spontaneous oscillation of APC/C activity and nuclear-cytoplasmic shuttling of CDC6 even in the absence of mitosis. Moreover, the PLK1-SCFβ-TrCP1-EMI1 axis and cyclin A2-CDK2 were inextricably linked to the APC/C activation and genome reduplication. These data extended our understanding of the role of the different cyclin-CDK complexes in coordinating genome reduplication.  相似文献   

4.
Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.Cell migration is a highly coordinated process essential for physiological and pathological processes (69). Signaling through Rho family GTPases (e.g., Rac, Cdc42, and Rho) is crucial for cell migration. Activated Rac and Cdc42 are involved in the production of a dominant lamellipodium and filopodia, respectively, whereas Rho-stimulated contractile forces are required for tail retraction and to maintain adhesion to the matrix (57, 58, 68). Rac- and Cdc42-dependent membrane protrusions are driven by the actin cytoskeleton and the formation of peripheral focal complexes; Rho activation stabilizes protrusions by stimulating the formation of mature focal adhesions and stress fibers. Active Rho influences cytoskeletal dynamics through effectors including the Rho kinases (ROCKs) (2, 3).Rho activity is stimulated by GEFs that promote GTP binding and attenuated by GTPase-activating proteins (GAPs) that enhance Rho''s intrinsic GTPase activity. However, due to the large number of RhoGEFs and RhoGAPs expressed in mammalian cells, the molecular mechanisms responsible for regulation of Rho activity in time and space are incompletely understood. p190A RhoGAP (hereafter p190A) is implicated in adhesion and migration signaling. p190A contains an N-terminal GTPase domain, a large middle domain juxtaposed to the C-terminal GAP domain, and a short C-terminal tail (74). The C-terminal tail of ∼50 amino acids is divergent between p190A and the closely related family member p190B (14) and thus may specify the unique functional roles for p190A and p190B revealed in gene knockout studies (10, 11, 41, 77, 78). p190A activity is dynamically regulated in response to external cues during cell adhesion and migration (5, 6, 59). Arthur et al. (5) reported that p190A activity is required for the transient decrease in RhoGTP levels seen in fibroblasts adhering to fibronectin. p190A activity is positively regulated by tyrosine phosphorylation (4, 5, 8, 17, 31, 39, 40, 42): phosphorylation at Y1105 promotes its association with p120RasGAP and subsequent recruitment to membranes or cytoskeleton (8, 17, 27, 31, 71, 75, 84). However, Y1105 phosphorylation is alone insufficient to activate p190A GAP activity (39). While the functions of p190A can be irreversibly terminated by ubiquitinylation in a cell-cycle-dependent manner (80), less is known about reversible mechanisms that negatively regulate p190A GAP activity during adhesion and motility.The integration of Rho family GTPase and extracellular signal-regulated kinase (ERK) signaling is important for cell motility (48, 50, 63, 76, 79). Several studies have demonstrated a requirement for ERK signaling in the disassembly of focal adhesions in migrating cells, in part through the activation of calpain proteases (36, 37) that can downregulate focal adhesion kinase (FAK) signaling (15), locally suppress Rho activity (52), and sever cytoskeletal linkers to focal adhesions (7, 33). Inhibition of ERK signaling increases focal adhesion size and retards disassembly of focal adhesions in adherent cells (57, 64, 85, 86). It is also recognized that ERK modulates Rho-dependent cellular processes, including membrane protrusion and migration (18, 25, 64, 86). Interestingly, ERK activated in response to acute fibronectin stimulation localizes not only to mature focal adhesions, but also to peripheral focal complexes (32, 76). Since these complexes can either mature or be turned over (12), ERK may play a distinct role in focal adhesion assembly. ERK is proposed to promote focal adhesion formation by activating myosin light chain kinase (MLCK) (21, 32, 50).Here we find that ERK activity is required for Rho activation and focal adhesion formation during adhesion to fibronectin and that p190A is an essential target of ERK signaling in this context. Inspection of the p190A C terminus reveals a number of consensus ERK sites and indeed p190A is phosphorylated by recombinant ERK only on its C terminus in vitro, and on the same C-terminal peptide in vivo. Mutation of the C-terminal ERK phosphorylation sites to alanine increases the biochemical and biological activity of p190A. Finally, inhibition of MEK or mutation of the C-terminal phosphorylation sites enhances retention of p190A in peripheral membranes during spreading on fibronectin. Our data support the conclusion that ERK phosphorylation inhibits p190A allowing increases in RhoGTP and cytoskeletal changes necessary for focal adhesion formation.  相似文献   

5.
6.
7.
To prevent aneuploidy, cells require a mitotic surveillance mechanism, the spindle assembly checkpoint (SAC). The SAC prevents metaphase/anaphase transition by blocking the ubiquitylation and destruction of cyclin B and securin via the Cdc20-activated anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway. This checkpoint involves the kinetochore proteins Mad2, BubR1, and Cdc20. Mad2 and BubR1 are inhibitors of the APC/C, but Cdc20 is an activator. Exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear; in vertebrates, most current models suggest that kinetochore-bound Mad2 is required for initial binding to Cdc20 to form a stable complex that includes BubR1. Here, we show that the Mad2 kinetochore dimerization recruitment mechanism is conserved and that the recruitment of Cdc20 to kinetochores in Drosophila requires BubR1 but not Mad2. BubR1 and Mad2 can bind to Cdc20 independently, and the interactions are enhanced after cells are arrested at mitosis by the depletion of Cdc27 using RNA interference (RNAi) in S2 cells or by MG132 treatment in syncytial embryos. These findings offer an explanation of why BubR1 is more important than Mad2 for SAC function in flies. These findings could lead to a better understanding of vertebrate SAC mechanisms.The spindle assembly checkpoint (SAC) is a mitotic surveillance mechanism that negatively regulates the activation of the anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway to prevent the destruction of two key substrates, cyclin B and securin, thereby inhibiting the metaphase-to-anaphase transition until bipolar attachment of all chromosomes has been achieved (35). A number of conserved kinetochore proteins have been identified as SAC components, such as Mad1, Mad2, Bub1, BubR1, Bub3, Mps1, Zw10, and Rod and Aurora B kinase (reviewed by Musacchio and Salmon [35]). In vertebrates, it is believed that a diffusible inhibitory “wait anaphase” signal is generated from unattached kinetochores or lack of spindle tension (27, 45, 47) and that its primary target is Cdc20/Fzy (Fzy is the Drosophila Cdc20 homolog that we refer to as Cdc20 here), which is an essential APC/C activator (35). Mad2, BubR1 (Mad3 in Saccharomyces cerevisiae), Bub3, and Cdc20 have been found in the mitotic checkpoint complex (MCC) or its subcomplexes Bub3-BubR1-Cdc20 and Mad2-Cdc20 (42, 50, 56). Kinetochore-dependent recruitment and activation of Mad2 have been illustrated in a “template” model (12) and later a modified “two-state” model (28, 32, 35, 36, 40, 57). This model suggests that a kinetochore-bound and conformationally rearranged Mad2 is required for Cdc20 binding and that it leads to the formation of the Mad2-Cdc20 complex (8, 9, 12, 16, 48, 49). This is further supported by a more recent report that unattached kinetochores from purified HeLa cell chromosomes can catalytically generate a diffusible Cdc20 inhibitor when presented with kinetochore-bound Mad2 and that these purified chromosomes can also promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2 but not BubR1 (27). In vitro assays also suggest that Mad2 is required for Cdc20 binding to BubR1 (7, 10, 19). Fluorescence recovery after photobleaching analysis has suggested that the ∼50% of green fluorescent protein (GFP)-Cdc20 that associates with slow-phase kinetics on PtK2 cell kinetochores is Mad2 dependent (22). However, contradictory reports also exist to suggest that Mad2 might not be required for Cdc20 kinetochore localization in Xenopus and PtK2 cells (22) and that BubR1 might play a crucial role for this in human cell lines (33). In contrast to the above-mentioned slow-phase GFP-Cdc20, the remaining ∼50% of GFP-Cdc20 that associates with fast kinetics on prometaphase or metaphase kinetochores is Mad2 independent, and its kinetics parallel those of GFP-BubR1 in PtK2 cells. GFP-Cdc20 is still detectable on kinetochores through anaphase, where both Mad2 and BubR1 are greatly reduced (22, 25). Moreover, the direct requirement for the kinetochore in the formation of the SAC-inhibitory complexes has been challenged by a non-kinetochore-based formation hypothesis, with MCC found to be present in HeLa cells during S phase (50) and complex formation in yeast previously shown to be independent of intact kinetochores (17, 43). Therefore, despite the importance of Cdc20 in understanding SAC mechanisms, exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear in vertebrates.Drosophila melanogaster is a well-established model used to study the spindle assembly checkpoint (2, 3, 6, 39). More recently, phenotypes of two mad2-null Drosophila mutant alleles, mad2Δ and mad2P, have been characterized, showing that Mad2 protein is not essential for normal mitotic progression but remains essential for SAC when microtubule attachment, chromosome alignment, and congression are abnormal (5). This contrasts with its counterpart in mouse and human (14, 34, 54) and is also different from the lethality phenotypes reported for bubR1 and cdc20 mutations in Drosophila (3, 11). It has also been reported that Mad2 is less important for SAC than BubR1 and that it is regulated differently in Drosophila S2 culture cells (39). These observations led to the tentative conclusion that Drosophila Mad2 may possess different kinetochore molecular mechanisms and function differently from its homologs in mouse and human (14, 34, 54, 58). We therefore tested Mad2 kinetochore function and further investigated the mechanisms required for Cdc20 kinetochore recruitment and localization using Drosophila transgenic and mutant lines, as well as culture cells. We have characterized a new mad2-null mutant allele, mad2EY, and demonstrated that Drosophila possesses a highly conserved Mad2 kinetochore dimerization mechanism required for SAC function. However, Mad2 is not required for Cdc20 kinetochore recruitment and localization. Instead, there is an essential role for BubR1 in this mechanism during normal mitosis and SAC activation.  相似文献   

8.
9.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

10.
11.
12.
13.
14.
15.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

16.
17.
18.
19.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号