首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary DeproteinatedA. niger biomass contains several covalently bound amino acids. The most abundant are arginine, serine, and proline in molar ratio of 3:2:2. One order of magnitude less is the amount of valine, phenylalanine, leucine and glycine. On deacetylation and separation of chitosan from glucan, the main three amino acids remain bound predominantly to chitosan, whereas the hydrophobic amino acids accompany mainly glucan. The presence of arginine could be the cause of stronger basicity of fungal chitosan compared to polyglucosamine.  相似文献   

2.
A bacterium, GJ-18, having strong chitinolytic activity was isolated from coastal soil. The isolated strain was identified as Aeromonas sp. by morphological and biochemical properties along with 16S rRNA gene sequence. The crude chitinolytic activity of culture supernatants was maximal on the 5th day of culture. Below 45°C, chitin was effectively hydrolyzed to N-acetyl--d-glucosamine (GlcNAc) by Aeromonas sp. GJ-18 crude enzymes, but hydrolysis decreased markedly above 50°C. The optimum pH for enzyme activity was 5.0. TLC and HPLC analysis revealed that, below 45°C, the major reaction product was GlcNAc with a small amount of (GlcNAc)2 and (GlcNAc)3, whereas above 50°C the major product was (GlcNAc)2. When swollen chitin (100 mg) was incubated with crude enzyme preparations (10 U) at 40°C, chitin was hydrolyzed to 83.0 and 94.9% yield of GlcNAc within 5 and 9 days, respectively.  相似文献   

3.
4.

Background

Trehalose is an important protectant in several microorganisms. In Saccharomyces cerevisiae, it is synthesized by a large complex comprising the enzymes Tps1 and Tps2 and the subunits Tps3 and Tsl1, showing an intricate metabolic control.

Methods

To investigate how the trehalose biosynthesis pathway is regulated, we analyzed Tps1 and Tps2 activities as well as trehalose and trehalose-6-phosphate (T6P) contents by mass spectrometry.

Results

Tsl1 deficiency totally abolished the increase in Tps1 activity and accumulation of trehalose in response to a heat stress, whereas absence of Tps3 only reduced Tps1 activity and trehalose synthesis. In extracts of heat stressed cells, Tps1 was inhibited by T6P and by ATP. Mg2 + in the presence of cAMP. In contrast, cAMP-dependent phosphorylation did not inhibit Tps1 in tps3 cells, which accumulated a higher proportion of T6P after stress. Tps2 activity was not induced in a tps3 mutant.

Conclusion

Taken together these results suggest that Tsl1 is a decisive subunit for activity of the TPS complex since in its absence no trehalose synthesis occurred. On the other hand, Tps3 seems to be an activator of Tps2. To perform this task, Tps3 must be non-phosphorylated. To readily stop trehalose synthesis during stress recovery, Tps3 must be phosphorylated by cAMP-dependent protein kinase, decreasing Tps2 activity and, consequently, increasing the concentration of T6P which would inhibit Tps1.

General significance

A better understanding of TPS complex regulation is essential for understanding how yeast deals with stress situations and how it is able to recover when the stress is over.  相似文献   

5.
Applied Microbiology and Biotechnology - Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically...  相似文献   

6.
Spent brewer's yeast was autolysed and used as a raw material for the preparation of 5-GMP-rich yeast extracts. Malt rootlets were used as a source of 5-phosphodiesterase. The crude enzyme was extracted from malt rootlets and pretreated to inactivate 5-nucleotidase. The optimum pretreatment conditions were heating at 65 °C for 30 min or 70 °C for 7 min. The effects of autolysis time, phosphodiesterase concentration and incubation period on 5-GMP content were examined. The suitable autolysis time was 8 h. The preferable enzyme treatment period was in the range of 8–14 h. Longer autolysis and enzyme incubation periods caused a decrease in the 5-GMP content from 0.7–0.9% (w/w) to 0.2–0.4% (w/w). The 5-GMP content in extracts from debittered and non-debittered yeast was similar. The highest 5-GMP content in yeast extract was 0.93% (w/w), obtained with a phosphodiesterase concentration of 1.6unit/ml of yeast extract (5% solids content).  相似文献   

7.
The presence of chitin in hyphal cell walls and regenerating protoplast walls ofSaprolegnia monoi¨ca was demonstrated by biochemical and biophysical analyses. α-Chitin was characterized by X-ray diffraction, electron diffraction, and infrared spectroscopy. In hyphal cell walls, chitin appeared as small globular particles while cellulose, the other crystalline cell wall component, had a microfibrillar structure. Chitin synthesis was demonstrated in regenerating protoplasts by the incorporation of radioactiveN-acetylglucosamine into a KOH-insoluble product. Chitin synthase activity of cell-free extracts was particulate. This activity was stimulated by trypsin and inhibited by the competitive inhibitor polyoxin D (Ki 20 μM). The reaction product was insoluble in 1M KOH or 1M acetic acid and was hydrolyzed by chitinase into diacetylchitobiose. Fungal growth and cell wall chitin content were reduced when mycelia were grown in the presence of polyoxin D. However, hyphal morphology was not altered by the presence of the antibiotic indicating that chitin does not seem to play an important role in the morphogenesis ofSaprolegnia.  相似文献   

8.
Summary N,N′-diacetylchitobiose was produced from chitin as a major hydrolytic product by controlling the ratio of β-N-acetylglucosaminidase to N,N′-diacetylchitobiohydrolase activities in the crude enzyme preparation of Aeromonas sp. GJ-18. When the enzyme preparation was preincubated at 50 °C, β-N-acetylglucosaminidase was nearly inactivated, while the N,N′-diacetylchitobiohydrolase was still active. Thus, the composition of chitin oligosaccharides depended on the preincubation temperature of the crude enzyme preparations. Typically, after 7 days of incubation with the substrate chitin, 78.9 and 56.6% of N,N′-diacetylchitobiose yields were obtained from swollen α-chitin and powdered β-chitin, respectively, with enzyme preparations that had been pretreated at 50 °C for 60 min.  相似文献   

9.
《Small Ruminant Research》2007,70(1-3):217-220
Tannin–protein complex degrading bacteria after enrichment were isolated from unadapted goat faecal samples. Based on the morphological, hemolytic and biochemical characters, the isolates were categorized in two groups comprising GF1–GF4 and GF5–GF6. All the isolates were gram-positive cocci, catalase negative belonging to different strains of Group D streptococci, Enterococcus faecalis. Among six isolates, GF1 was the most resistant that could tolerate up to 4% of tannic acid in the medium with no significant change in the morphology. Tannase activity was detected in all the isolates, indicating their tannin degrading potential while gallate decarboxylase activity was detected only in three isolates GF1, GF2 and GF6.  相似文献   

10.
A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate–ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol–cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.  相似文献   

11.
Xylan–lignin (XL), glucomannan–lignin (GML) and glucan–lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/β-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of lignin–carbohydrate linkages increased. Analytical pyrolysis confirmed the action of the enzymatic hydrolysis, with strong decreases of levoglucosane and other carbohydrate-derived products. Unexpectedly it also revealed that the hydrolase treatment alters the pattern of lignin breakdown products, resulting in higher amounts of coniferyl alcohol. From the anomeric carbohydrate signals in the 2D-NMR spectra, phenyl glycoside linkages (undetectable in the original complexes) could be identified in the hydrolyzed GML complex. Lower amounts of glucuronosyl and benzyl ether linkages were also observed after the hydrolysis. From the 2D-NMR spectra of the hydrolyzed complexes, it was concluded that the lignin in GML is less condensed than in XL due to its higher content in β-O-4′ ether substructures (62 % of side chains in GML vs 53 % in XL) accompanied by more coniferyl alcohol end units (16 vs 13 %). In contrast, the XL lignin has more pinoresinols (11 vs 6 %) and dibenzodioxocins (9 vs 2 %) than the GML (and both have ~13 % phenylcoumarans and 1 % spirodienones). Direct 2D-NMR analysis of the hydrolyzed GL complex was not possible due to its low solubility. However, after sample acetylation, an even less condensed lignin than in the GML complex was found (with up to 72 % β-O-4′ substructures and only 1 % pinoresinols). The study provides evidence for the existence of structurally different lignins associated to hemicelluloses (xylan and glucomannan) and cellulose in spruce wood and, at the same time, offers information on some of the chemical linkages between the above polymers.  相似文献   

12.
The production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6–8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms. This information, combined with physiological studies in the laboratory and, more recently, genome sequencing data, has allowed us to start clarifying why and how these strains behave differently from the better known laboratory, wine, beer, and baker's strains. All these issues are covered in this minireview, which also presents a brief discussion on future directions in the field and on the perspectives of introducing genetically modified strains in this industrial process.  相似文献   

13.
This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751.  相似文献   

14.
A 50-ns molecular dynamics simulation has been used to study the homotetramer of the enzyme glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) complexes, from Trypanosoma cruzi, with nicotinamide adenine dinucleotide (NAD+) cofactors in aqueous solution. The root mean square deviation indicates that the overall structure of the homotetramer does not undergo significant change. The largest structural change observed was in the NAD+ binding domain of subunit (chain) D; as a consequence, the NAD+ cofactor was dislocated from its initial position. However, the other subunits were not affected, suggesting that the gGAPDH enzyme exhibits non-cooperative behaviour. Our simulation estimates that the NAD+ binding domain rotates about 4.8° relative to the catalytic domain in the apo–holo form transition. The hydrogen bond analysis reveals that the residues R12, I13, D38 and M39 are essential for gGAPDH–NAD+ interaction. Furthermore, two promising cavities to be explored in drug design were found: one formed by residues I13, R12, T197, T199, E336 and Y339, and the other by residues C166, H194, R249, I13, R12, T197, T199, E336 and Y339. The results presented in this paper offer new insight into the search for inhibitors of the gGAPDH enzyme of T. cruzi protozoan.  相似文献   

15.
Synthetic cell–cell interaction systems can be useful for understanding multicellular communities or for screening binding molecules. We adapt a previously characterized set of synthetic cognate nanobody–antigen pairs to a yeast–bacteria coincubation format and use flow cytometry to evaluate cell–cell interactions mediated by binding between surface-displayed molecules. We further use fluorescence-activated cell sorting to enrich a specific yeast-displayed nanobody within a mixed yeast-display population. Finally, we demonstrate that this system supports the characterization of a therapeutically relevant nanobody–antigen interaction: a previously discovered nanobody that binds to the intimin protein expressed on the surface of enterohemorrhagic Escherichia coli. Overall, our findings indicate that the yeast–bacteria format supports efficient evaluation of ligand–target interactions. With further development, this format may facilitate systematic characterization and high-throughput discovery of bacterial surface-binding molecules.  相似文献   

16.
17.
Fast growing strains of Rhizobium loti isolated from nodules of Lotus tenuis of the flooding Pampas of Argentina produced cellular (1–2)glucans having a higher degree of polymerization and more anionic substituents than (1–2)glucans accumulated by Agrobacterium tumefaciens cells. Inner membranes of R. loti contained a 235 kDa (1–2)glucan intermediate protein indistinguishable by polyacrylamide gel electrophoresis from the intermediate protein present in A. tumefaciens inner membranes. Incubation of inner membrannes of R. loti with UDP-Gle led to the formation of neutral (1–2)glucans with a higher degree of polymerization than glucans formed by A. tumefaciens inner membranes.Introduction in R. loti strains of plasmid pCD523 containing A. tumefaciens chvA and chvB virulence regions yielded strains that accumulated 4 times more cellular (1–2)glucans than wild type cells. This glucan was, regarding anionic substitution and degree of polymerization, indistinguishable from A. tumefaciens (1–2)glucans. Furthermore inner membranes of these R. loti exoconjugant cells contained higher levels of the 235 kDa (1–2)glucan intermediate protein and formed in vitro 8 times more neutral (1–2)glucan with a degree of polymerization corresponding to A. tumefaciens (1–2)glucan than inner membranes isolated from wild type cells.It was concluded that A. tumefaciens chvB gene is expressed in R. loti and determined the degree of polymerization of (1–2)glucan.Abbreviations Nod+ effective nodulation - Vir+ virulent - Vir- avirulent - Trpr trimethoprim resistence - Tcr tetracycline resistence - TCA trichloroacetic acid - PMSF phenyl methyl sulfonyl fluoride  相似文献   

18.
19.
《Process Biochemistry》2007,42(3):444-448
The application of dye–ligand expanded bed chromatography adsorption (EBA) of glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast extract was undertaken by using a commercially available expanded bed column (20 mm i.d.) and UpFront adsorbent (ρ = 1.5 g/mL) from UpFront Chromatography. The influence of biomass concentration on the adsorption capacity was explored by employing yeast extracts containing various biomass concentrations (5–30%, w/v). It was demonstrated that the biomass concentration had little effect on G6PDH adsorption performance. Feedstock containing 15% (w/v) biomass gave a relatively high recovery yield (>90%) of G6PDH compared to feedstock containing 30% (w/v) biomass, which gave a recovery of 75% G6PDH. Nevertheless, the enzyme specific activity of 7 U mg−1 with a purification factor of 6 was achieved in the feedstock containing biomass concentration of 30% (w/v). The generic applicability of dye–ligand as an affinity tool in expanded bed chromatography is discussed.  相似文献   

20.
A vast array of triterpenes are found in living organisms in addition to lanosterol and cycloartenol, which are involved in sterol biosynthesis in non–photosynthetic and photosynthetic eukaryotes respectively. The chemical structure of these triterpenes is determined by a single step catalysed by 2,3–oxidosqualene–triterpene cyclases. The present study describes cloning and functional expression in yeast of several OS–triterpene cyclases. Three Arabidopsis thaliana cDNAs encoding proteins (ATLUP1, ATLUP2, ATPEN1) 57%, 58% and 49% identical to cycloartenol synthase from the same plant were isolated. Expression of these cDNAs in yeast showed that the recombinant proteins catalyse the synthesis of various pentacyclic triterpenes. Whereas ATLUP1 is essentially involved in the synthesis of lupeol, ATLUP2 catalyses the production of lupeol, – and –amyrin (in a 15:55:30 ratio). ATLUP2 is therefore a typical multifunctional enzyme. Under the same conditions, ATPEN1 did not lead to any product. Systematic sequencing of the Arabidopsis genome has led to genomic sequences encoding proteins identical to the above triterpene synthases. ATLUP1 and ATLUP2 are representative of a small subfamily (A) of at least five genes, whereas ATPEN1 is representative of a subfamily (B) of at least seven genes. The number of introns is characteristic of each subfamily. Whereas genes of family A possess 17 exons and 16 introns, genes of the subfamily B contain 14 exons and 13 introns. The size of each exon is remarkably conserved within each subfamily whereas that of each intron appears to be highly variable. Organization of the genes, sequences and functions of the deduced proteins are discussed in evolutionary terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号