首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter.

Methods

Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed.

Results

Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics.

Conclusion

These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.  相似文献   

2.

Background

Th2 cell activation and T regulatory cell (Treg) deficiency are key features of allergy. This applies for asthma and rhinitis. However with a same atopic background, some patients will develop rhinitis and asthma, whereas others will display rhinitis only. Co-receptors are pivotal in determining the type of T cell activation, but their role in allergic asthma and rhinitis has not been explored. Our objective was to assess whether allergen-induced T cell activation differs from allergic rhinitis to allergic rhinitis with asthma, and explore the role of ICOS, CD28 and CTLA-4.

Methods

T cell co-receptor and cytokine expressions were assessed by flow cytometry in PBMC from 18 house dust mite (HDM) allergic rhinitics (R), 18 HDM allergic rhinitics and asthmatics (AR), 13 non allergic asthmatics (A) and 20 controls, with or without anti-co-receptors antibodies.

Results

In asthmatics (A+AR), a constitutive decrease of CTLA-4+ and of CD4+CD25+Foxp3+ cells was found, with an increase of IFN-γ+ cells. In allergic subjects (R + AR), allergen stimulation induced CD28 together with IL-4 and IL-13, and decreased the proportion of CTLA-4+, IL-10+ and CD4+CD25+Foxp3+ cells. Anti-ICOS and anti-CD28 antibodies blocked allergen-induced IL-4 and IL-13. IL-13 production also involved CTLA-4.

Conclusions

T cell activation differs between allergic rhinitis and asthma. In asthma, a constitutive, co-receptor independent, Th1 activation and Treg deficiency is found. In allergic rhinitis, an allergen-induced Treg cell deficiency is seen, as well as an ICOS-, CD28- and CTLA-4-dependent Th2 activation. Allergic asthmatics display both characteristics.  相似文献   

3.

Background

Airway inflammation is an important characteristic of asthma and has been associated with airway remodelling and bronchial hyperreactivity. The mucosal microenvironment composed of structural cells and highly specialised extracellular matrix is able to amplify and promote inflammation. This microenvironment leads to the development and maintenance of a specific adaptive response characterized by Th2 and Th17. Bronchial fibroblasts produce multiple mediators that may play a role in maintaining and amplifying this response in asthma.

Objective

To investigate the role of bronchial fibroblasts obtained from asthmatic subjects and healthy controls in regulating Th17 response by creating a local micro-environment that promotes this response in the airways.

Methods

Human bronchial fibroblasts and CD4+T cells were isolated from atopic asthmatics and non-atopic healthy controls. CD4+T were co-cultured with bronchial fibroblasts of asthmatic subjects and healthy controls. RORc gene expression was detected by qPCR. Phosphorylated STAT-3 and RORγt were evaluated by western blots. Th17 phenotype was measured by flow cytometry. IL-22, IL17, IL-6 TGF-β and IL1-β were assessed by qPCR and ELISA.

Results

Co-culture of CD4+T cells with bronchial fibroblasts significantly stimulated RORc expression and induced a significant increase in Th17 cells as characterized by the percentage of IL-17+/CCR6+ staining in asthmatic conditions. IL-17 and IL-22 were increased in both normal and asthmatic conditions with a significantly higher amount in asthmatics compared to controls. IL-6, IL-1β, TGF-β and IL-23 were significantly elevated in fibroblasts from asthmatic subjects upon co-culture with CD4+T cells. IL-23 stimulates IL-6 and IL-1β expression by bronchial fibroblasts.

Conclusion

Interaction between bronchial fibroblasts and T cells seems to promote specifically Th17 cells profile in asthma. These results suggest that cellular interaction particularly between T cells and fibroblasts may play a pivotal role in the regulation of the inflammatory response in asthma.  相似文献   

4.

Background

Allergic inflammation is commonly observed in a number of conditions that are associated with atopy including asthma, eczema and rhinitis. However, the genetic, environmental or epigenetic factors involved in these conditions are likely to be different. Epigenetic modifications, such as DNA methylation, can be influenced by the environment and result in changes to gene expression.

Objectives

To characterize the DNA methylation pattern of airway epithelial cells (AECs) compared to peripheral blood mononuclear cells (PBMCs) and to discern differences in methylation within each cell type amongst healthy, atopic and asthmatic subjects.

Methods

PBMCs and AECs from bronchial brushings were obtained from children undergoing elective surgery for non-respiratory conditions. The children were categorized as atopic, atopic asthmatic, non-atopic asthmatic or healthy controls. Extracted DNA was bisulfite treated and 1505 CpG loci across 807 genes were analyzed using the Illumina GoldenGate Methylation Cancer Panel I. Gene expression for a subset of genes was performed using RT-PCR.

Results

We demonstrate a signature set of CpG sites that are differentially methylated in AECs as compared to PBMCs regardless of disease phenotype. Of these, 13 CpG sites were specific to healthy controls, 8 sites were only found in atopics, and 6 CpGs were unique to asthmatics. We found no differences in the methylation status of PBMCs between disease phenotypes. In AECs derived from asthmatics compared to atopics, 8 differentially methylated sites were identified including CpGs in STAT5A and CRIP1. We demonstrate STAT5A gene expression is decreased whereas CRIP1 gene expression is elevated in the AECs from asthmatic compared to both healthy and atopic subjects.

Discussion

We characterized a cell specific DNA methylation signature for AECs compared to PBMCs regardless of asthmatic or atopic status. Our data highlight the importance of understanding DNA methylation in the epithelium when studying the epithelial contribution to asthma.  相似文献   

5.

Background

Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear.

Methods

We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema.

Results

Both case-control and parent-to-siblings analyses demonstrated that while the presence of specific IgE against individual allergens correlated poorly with pathological conditions, particular reactivity profiles were significantly associated with asthma (p<10E-09). An artificial neural network (ANN)-based algorithm, calibrated with the profile reactivity data, correctly classified as asthmatic or non-asthmatic 78% of the individual examined. Multivariate statistical analysis demonstrated that the familiar relationships of the study population did not affect the observed correlations.

Conclusions

These findings indicate that asthma is a higher-order phenomenon related to patterns of IgE reactivity rather than to single antibody reactions. This notion sheds new light on the pathogenesis of the disease and can be readily employed to distinguish asthmatic and non-asthmatic individuals on the basis of their serum reactivity profile.  相似文献   

6.

Background and Objective

Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known.

Objective

To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism.

Methods

We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined.

Results

In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM.

Conclusion

Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed.  相似文献   

7.

Purpose

Little research has been reported concerning insufficient physical activity in Taiwanese adolescents with asthma. The aims of this paper are to compare the amount of physical activity between asthmatic and non-asthmatic adolescents in Taiwan, as well as to investigate the influential factors associated with insufficient physical activity in asthmatic adolescents.

Methods

Self-reporting structured questionnaires (socio-economic status, scale of family support for physical activity, amount of physical activity) and peak expiratory flow were assessed from 286 adolescents with asthma and 588 non-asthmatic adolescents in a cross-sectional design. Insufficient amount of physical activity was based on less than 300 minutes per week of moderate and vigorous physical activity.

Results

Adolescents with asthma have a greater amount of physical activity and a higher level of family support than those who are non-asthmatic. In Taiwan, adolescents with asthma, girls relative to boys, obesity relative to average weight, and low family support relative to high family support were found to be associated with insufficient physical activity.

Conclusion

Physical activity in adolescents with asthma is insufficient especially in girls, in asthmatics with obesity, and in those with low family support. We suggest that physical activity programs should be applied to Taiwan adolescents with asthma in order to match the criteria of 300 minutes per week of moderate and vigorous physical activity, especially for girls, the obese and those with a low level of family support.  相似文献   

8.

Background:

Recently, reports have indicated a role for the membrane form of Toll-like Receptor 2 (TLR2) in asthma pathogenesis. In this study we examined soluble TLR2 levels in serum and sputum of asthmatic and healthy subjects.

Methods:

Serum and sputum samples were obtained from 33 asthmatic and 19 healthy subjects. The asthmatics were classified into four groups according to the Global Initiative for Asthma. A sandwich ELISA was developed to measure soluble TLR2 (sTLR2) in serum and sputum. TLR2 mRNA expression was determined by semi-quantitative RT-PCR of all sputum samples.

Results:

The mean sTLR2 levels from serum and sputum of asthmatics were significantly lower than those from healthy subjects. Moreover, sTLR2 concentration decreased concomitantly with asthma severity. The differences observed, however, were not statistically significant. TLR2/GAPDH mRNA of sputum leukocytes was also significantly lower in asthmatics than in healthy subjects.

Conclusion:

This study demonstrated for the first time thatsTLR2 levels are lower in serum and sputum samples from asthmatic than from healthy subjects, and this could be an indicator of TLR2 expression. We also found that sTLR2 concentration in serum decreased concomitantly with an increase of asthma severity clinical score. Key Words: Asthma, Expression, TLR2 mRNA, Soluble Toll-like receptor  相似文献   

9.

Background

Local IgE production may play a role in asthma pathogenesis. The aim of the study was to assess sputum total IgE and cytokines in asthmatics according to sputum cellular phenotype.

Methods

We studied 122 subjects including 22 non atopic healthy subjects, 41 eosinophilic (sputum eosinophils ≥3%), 16 neutrophilic (sputum neutrophils >76%) and 43 pauci-granulocytic asthmatics (sputum eosinophils <3% and sputum neutrophils ≤76%) recruited from the asthma clinic at CHU Liege.Sputum supernatant total IgE (tIgE) was measured by ImmunoCAP and sputum supernatant cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-γ and TNF-α) were measured with the Luminex xMAP Technology by using commercially available Fluorokine MAP kits.

Results

After concentrating sputum samples, total IgE was detectable in the majority of subjects. Sputum IgE was raised in asthmatics when compared to healthy subjects. Overall, asthmatics did not significantly differ from healthy subjects with respect to cytokine levels. The eosinophilic asthma phenotype, however, was characterised by raised sputum tIgE, IL-5 and IL-13 compared to healthy subjects (p<0.001, p<0.001 and p<0.05 respectively) and pauci-granulocytic asthma (p<0.01, p<0.001 and p<0.05 respectively) and raised IL-5 compared to neutrophilic asthma (p<0.01). When patients were classified according to sputum IgE levels, it appeared that IL-5, IL-6, IL-17 and TNF-α sputum supernatant levels were raised in the “IgE high” asthmatics (IgE ≥0.1 kU/l) when compared to “IgE low” asthmatics (IgE<0.1 kU/l).

Conclusion

The eosinophilic asthma phenotype was associated with raised sputum IgE and a Th2 cytokine profile. Raised sputum IgE was associated with a heterogeneous cytokine overproduction.  相似文献   

10.

Background

Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine.

Objective

To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease.

Methods

Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects.

Results

The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p < 0.01). Hierarchical regression analysis in the total study cohort indicates that the relationship between asthma and lung function could be mediated by IL-6. Among Th2 cytokines only IL-13 (p < 0.05) was also elevated in the asthmatic group, and positively correlated with IL-6 levels (rS = 0.53, p < 0.05).

Conclusions

In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.  相似文献   

11.

Background

Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood.

Objective

In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines.

Methods

Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays.

Results

The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release.

Conclusions

Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases.  相似文献   

12.
13.

Background

Increased activation and increased survival of T lymphocytes characterise bronchial asthma.

Objectives

In this study the effect of budesonide on T cell survival, on inducible co-stimulator T cells (ICOS), on Foxp3 and on IL-10 molecules in T lymphocyte sub-populations was assessed.

Methods

Cell survival (by annexin V binding) and ICOS in total lymphocytes, in CD4+/CD25+ and in CD4+/CD25- and Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25-cells was evaluated, by cytofluorimetric analysis, in mild intermittent asthmatics (n = 19) and in controls (n = 15). Allergen induced T lymphocyte proliferation and the in vivo effects of budesonide in mild persistent asthmatics (n = 6) were also explored.

Results

Foxp3 was reduced in CD4+/CD25- and in CD4+/CD25+ cells and ICOS was reduced in CD4+/CD25+ cells but it was increased in CD4+CD25-in asthmatics when compared to controls. In asthmatics, in vitro, budesonide was able to: 1) increase annexin V binding and to reduce ICOS in total lymphocytes; 2) increase annexin V binding and Foxp3 and to reduce ICOS in CD4+/CD25- cells; 3) reduce annexin V binding and to increase IL-10 and ICOS in CD4+/CD25+ cells; 4) reduce cell allergen induced proliferation. In vivo, budesonide increased ICOS in CD4+/CD25+ while it increased Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25- cells.

Conclusions

Budesonide modulates T cell survival, ICOS, Foxp3 and IL-10 molecules differently in T lymphocyte sub-populations. The findings provided shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation.  相似文献   

14.

Objective

No optimal housekeeping genes (HKGs) have been identified for CD4+ T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR) assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4+ T cells from these asthmatics.

Methods

Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively) were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1), ribosomal protein, large, P0 (RPLP0), actin, beta (ACTB), cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 1 (PGK1), beta-2-microglobulin (B2M), glucuronidase, beta (GUSB) and ribosomal protein L13a (RPL13A), was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder.

Results

The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05).

Conclusions

B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4+ T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.  相似文献   

15.

Background

Primary immune thrombocytopenia (ITP) is an autoimmune heterogeneous disorder that is characterized by decreased platelet count. Regulatory T (Treg) cells and T helper type 17 (Th17) cells are two subtypes of CD4+ T helper (Th) cells. They play opposite roles in immune tolerance and autoimmune diseases, while they share a common differentiation pathway. The imbalance of Treg/Th17 has been demonstrated in several autoimmune diseases. In this study, we aimed to investigate the ratio of the number of Treg cells to the number of Th17 cells in ITP patients and evaluate the clinical implications of the alterations in this ratio.

Methods

Thirty adult patients with newly diagnosed ITP enrolled in this study. Twelve patients had been clinically followed up for 12 months. The percentages of CD4+CD25hiFoxp3+ Treg cells and CD3+CD4+IL-17-producing Th17 cells in these patients and healthy controls (n = 17) were longitudinally analyzed by flow cytometry.

Results

The percentage of Treg cells in ITP patients was significantly lower than that of healthy controls, and the percentage of Th17 cells increased significantly at disease onset. The ratio of Treg/Th17 correlated with the disease activity.

Conclusion

The ratio of Treg/Th17 might be relevant to the clinical diversity of ITP patients, and this Treg/Th17 ratio might have prognostic role in ITP patients.  相似文献   

16.

Background

CD86-CD28 interaction has been suggested as the principal costimulatory pathway for the activation and differentiation of naïve T cells in allergic inflammation. However, it remains uncertain whether this pathway also has an essential role in the effector phase. We sought to determine the contribution of CD86 on dendritic cells in the reactivation of allergen-specific Th2 cells.

Methods

We investigated the effects of the downregulation of CD86 by short interfering RNAs (siRNAs) on Th2 cytokine production in the effector phase in vitro and on asthma phenotypes in ovalbumin (OVA)-sensitized and -challenged mice.

Results

Treatment of bone marrow-derived dendritic cells (BMDCs) with CD86 siRNA attenuated LPS-induced upregulation of CD86. CD86 siRNA treatment impaired BMDCs’ ability to activate OVA-specific Th2 cells. Intratracheal administration of CD86 siRNA during OVA challenge downregulated CD86 expression in the airway mucosa. CD86 siRNA treatment ameliorated OVA-induced airway eosinophilia, airway hyperresponsiveness, and the elevations of OVA-specific IgE in the sera and IL-5, IL-13, and CCL17 in the bronchoalveolar lavage fluid, but not the goblet cell hyperplasia.

Conclusion

These results suggest that local administration of CD86 siRNA during the effector phase ameliorates lines of asthma phenotypes. Targeting airway dendritic cells with siRNA suppresses airway inflammation and hyperresponsiveness in an experimental model of allergic asthma.  相似文献   

17.

Background

Laminins are a group of proteins largely responsible for the anchorage of cells to basement membranes. We hypothesized that altered Laminin chain production in the bronchial mucosa might explain the phenomenon of epithelial cell shedding in asthma. The aim was to characterize the presence of Laminin chains in the SEBM and epithelium in allergic and non-allergic asthmatics.

Patients and methods

Biopsies were taken from the bronchi of 11 patients with allergic and 9 patients with non-allergic asthma and from 7 controls and stained with antibodies against the Laminin (ln) chains alpha1-alpha5, beta1-beta2 and gamma1-gamma2.

Results

Lns-2,-5 and -10 were the main Laminins of SEBM. The layer of ln-10 was thicker in the two asthmatic groups while an increased thickness of lns-2 and -5 was only seen in allergic asthmatics. The ln gamma2-chain, which is only found in ln 5, was exclusively expressed in epithelial cells in association with epithelial injury and in the columnar epithelium of allergic asthmatics.

Conclusion

The uncoordinated production of chains of ln-5 in allergic asthma could have a bearing on the poor epithelial cell anchorage in these patients.  相似文献   

18.

Purpose

It has been shown that IL-9 plays a proinflammatory role in the pathogenesis of certain autoimmune diseases. This study was designed to investigate the possible role of IL-9 in the development of experimental autoimmune uveoretinitis (EAU) and the effect of IFN-β on its expression.

Methods

EAU was induced in B10RIII mice by immunization with interphotoreceptor retinoid-binding protein peptide 161–180 (IRBP161–180). IFN-β was administered subcutaneously to IRBP161–180 immunized mice every other day from day one before immunization to the end of the study. Splenocytes and draining lymph node (DLN) cells from EAU mice or control mice or EAU mice treated with IFN-β or PBS were stimulated with anti-CD3/CD28 or IRBP161–180 for 3 days. Naïve T cells cultured under Th1 or Th17 polarizing conditions were incubated in the presence or absence of IFN-β for 4 days. Effector/memory T cells were activated by anti-CD3/CD28 in the presence or absence of IFN-β for 3 days. IFN-β-treated monocytes were cocultured with naïve T cells or effector/memory T cells for 3 days. Culture supernatants were collected and IL-9 was detected by ELISA.

Results

IL-9 expression in splenocytes and DLN cells was increased in EAU mice during the inflammatory phase and returned back to lower levels during the recovery phase. IFN-β in vivo treatment significantly inhibited EAU activity in association with a down-regulated expression of IL-9. In vitro polarized Th1 and Th17 cells both secreted IL-9 and the addition of IFN-β suppressed production of IL-9 by both Th subsets. Beside its effect on polarized Th cells, IFN-β also suppressed the secretion of IL-9 by effector/memory T cells. However, IFN-β-treated monocytes had no effect on the production of IL-9 when cocultured with naïve or effector/memory T cells.

Conclusion

IL-9 expression is increased during EAU which could be suppressed by IFN-β.  相似文献   

19.

Background

Environmental tobacco smoke (ETS) has adverse effects on the health of asthmatics, however the harmful consequences of ETS in relation to asthma severity are unknown.

Methods

In a multicenter study of severe asthma, we assessed the impact of ETS exposure on morbidity, health care utilization and lung functions; and activity of systemic superoxide dismutase (SOD), a potential oxidative target of ETS that is negatively associated with asthma severity.

Findings

From 2002–2006, 654 asthmatics (non-severe 366, severe 288) were enrolled, among whom 109 non-severe and 67 severe asthmatics were routinely exposed to ETS as ascertained by history and validated by urine cotinine levels. ETS-exposure was associated with lower quality of life scores; greater rescue inhaler use; lower lung function; greater bronchodilator responsiveness; and greater risk for emergency room visits, hospitalization and intensive care unit admission. ETS-exposure was associated with lower levels of serum SOD activity, particularly in asthmatic women of African heritage.

Interpretation

ETS-exposure of asthmatic individuals is associated with worse lung function, higher acuity of exacerbations, more health care utilization, and greater bronchial hyperreactivity. The association of diminished systemic SOD activity to ETS exposure provides for the first time a specific oxidant mechanism by which ETS may adversely affect patients with asthma.  相似文献   

20.

Background

Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.

Objectives and Methods

We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using 3H-thymidine incorporation, cell count and Boyden chamber assays.

Results

PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-γ), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity.

Conclusions

Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号