首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ketoprofen–saccharide conjugates were synthesized by selectively enzymatic hydrolysis and acylation. Firstly, the (S)-ketoprofen vinyl ester was prepared by enzymatic hydrolysis of (R,S)-ketoprofen vinyl ester. Then enzymatic transesterification of (S)-ketoprofen vinyl ester with a series of saccharides were performed by the catalysis of a commercial protease from Bacillus licheniformis (BLP) in organic medium mixture of pyridine and tert-butanol. The ketoprofen was selectively conjugated onto the primary hydroxyl group of saccharides and with high yield after 72 h. Partition coefficient determination showed that all the products have better water solubility than parent ketoprofen. Chemical hydrolysis experiment indicated that 50% ketoprofen could be release from ketoprofen glucoside and maltoside in aqueous buffer (pH 7.4) within 48 h.  相似文献   

2.
A rigorous kinetic model describing the stepwise triglyceride hydrolysis at the oil–water interface, based on the Ping Pong Bi Bi mechanism using suspended lipase having positional specificity, was constructed. The preference of the enzyme to cleave to the ester bonds at the edge and the center of the glycerol backbone of the substrates (tri-, di- or monoglyceride) was incorporated in the model. This model was applied to the experimental results for triolein hydrolysis using suspended Porcine pancreatic lipase (an sn-1,3 specific lipase) and Candida rugosa lipase (a non-specific lipase) in a biphasic oil–water system under various operating conditions. In order to discuss the model’s advantages, other models that do not consider the positional specificity of the lipase were also applied to our experimental results. The model considering the positional specificity of the lipase gave results which fit better with the experimental data and described the effect of the initial enzyme concentration, the interfacial area, and the initial concentrations of triolein on the entire process of the stepwise triolein hydrolysis. This model also gives a good representation of the rate for cleaving the respective ester bonds of each substrate by each type of lipase.  相似文献   

3.
An enzymatic method for 6-oxohexanoic acid production was developed using 6-aminohexanoic acid and an ω-amino group-oxidizing enzyme (ω-AOX) from Phialemonium sp. AIU 274. 6-Oxohexanoic acid was produced from 6-aminohexanoic acid with 100% yield by incubation with 0.3 U of the ω-AOX and 20 U of catalase at 30 °C for 30 h in 0.1 M potassium phosphate buffer (pH 7.0).  相似文献   

4.
The psychrotolerant Pseudoalteromonas issachenkonii PAMC 22718 was isolated for its high exo-acting chitinase activity in the Kara Sea, Arctic. An exo-acting chitinase (W-Chi22718) was homogeneously purified from the culture supernatant of PAMC 22718, the molecular weight of which was estimated to be approximately 112?kDa. Due to its β-N-acetylglucosaminidase activity, W-Chi22718 was able to produce N-acetyl-D-glucosamine (GlcNAc) monomers from chitin oligosaccharide substrates. W-Chi22718 displayed chitinase activity from 0 to 37°C (optimal temperature of 30°C) and maintained activity from pH 6.0 to 9.0 (optimal pH of 7.6). W-Chi22718 exhibited a relative activity of 13 and 35% of maximal activity at 0 and 10°C, respectively, which is comparable to the activities of previously characterized, cold-adapted bacterial chitinases. W-Chi22718 activity was enhanced by K+, Ca2+, and Fe2+, but completely inhibited by Cu2+ and SDS. We found that W-Chi22718 can produce much more (GlcNAcs) from colloidal chitin, working together with previously characterized cold-active endochitinase W-Chi21702. Genome sequencing revealed that the corresponding gene (chi22718_IV) was 2,856?bp encoding a 951?amino acid protein with a calculated molecular weight of approximately 102?kDa.  相似文献   

5.
6.
A 1,8-naphthalimide–Cu(II) ensemble was rationally designed and synthesized as a new turn-on fluorescent probe utilizing the ‘chemosensing ensemble’ method for detections of thiols (Cys, Hcy and GSH) with high selectivity over other α-amino acids at pH 7.4 in organic aqueous media (EtOH/HEPES, v/v = 9:1). The recognition mechanism was attributed to the remove Cu(II) from the 1,8-naphthalimide–Cu(II) ensemble by thiols and the release of flurescence of ligand 1. Remarkable fluorescence enhancements were therefore observed in the sensing process of thiols by the 1,8-naphthalimide–Cu(II) ensemble. Furthermore, the 1,8-naphthalimide–Cu(II) ensemble was successfully applied to the fluorescence imaging of thiols in CHO cells with high sensitivity and selectivity.  相似文献   

7.
A gene cluster responsible for aldoxime metabolism in the glutaronitrile degrader Pseudomonas sp. K-9 was analyzed genetically and enzymatically. The cluster was composed of genes coding for aldoxime dehydratase (Oxd), nitrile hydratase (NHase), NHase activator, amidase, acyl-CoA ligase, and some regulatory and functionally unknown proteins, which were similar to proteins appearing in the “aldoxime–nitrile pathway” gene cluster from strains having Fe-containing NHase. A key enzyme in the cluster, OxdK, which has 32.7–90.3 % identity with known Oxds, was overexpressed in Escherichia coli cells under the control of a T7 promoter in its His6-tagged form, purified, and characterized. The enzyme showed similar characteristics with the known Oxds coexisting with an Fe-containing NHase in its subunit structure, substrate specificity, and effects on various compounds. The enzyme can be classified into a group of “aliphatic aldoxime dehydratase (EC 4.99.1.5).” The existence of a gene cluster of enzymes responsible for aldoxime metabolism via the aldoxime–nitrile pathway (aldoxime→nitrile→amide→acid→acyl-CoA) in Pseudomonas sp. K-9, and the fact that the proteins comprising the cluster are similar to those acting on aliphatic type substrates, evidently clarified the alkylaldoxime-degrading pathway in that strain.  相似文献   

8.
Trichoderma sp. K9301 secreting endoxylanases with an activity of 2836 U/g (dry weight) was screened for XOs production. Two acidic β-endoxylanases EX1 (30.1 kDa) and EX2 (20.1 kDa) were purified from crude extract of the strain K9301 in solid fermentation. Action modes of EX1 and EX2 towards XOs showed similar hydrolysis characters to endoxylanases belonging to glycosyl hydrolase family 10 and 11, respectively. EX1 exhibited better affinity but lower hydrolytic efficiency than EX2 to xylans from beechwood, birchwood, and oat-spelt. They had synergistic action on xylan hydrolysis. The optimum condition to prepare XOs from corncobs was obtained as 10 mg/ml corncob xylan incubated with 10 U/mg crude enzymes at 50 °C for 3 h. The yield of XOs reached 43.3%, and only a little amount of xylose (3.1%) was simultaneously produced, suggesting the good potential of strain K9301 in XOs production.  相似文献   

9.
ε-Poly-l-lysine (ε-PL), one of the only two homo-poly amino acids known in nature, is used as a preservative. In this study, strategies of feeding precursor l-lysine into 5 L laboratory scale fermenters, including optimization of l-lysine concentration and time, was investigated to optimize the production of ε-PL by Streptomyces sp. M-Z18. The optimized strategy was then used in ε-PL fed-batch fermentation in which glucose and glycerol served as mixed carbon sources. In this way, a novel ε-PL production strategy involving precursor l-lysine coupled with glucose–glycerol co-fermentation was developed. Under optimal conditions, ε-PL production reached 37.6 g/l, which was 6.2 % greater than in a previous study in which glucose and glycerol co-fermentation was performed without added l-lysine (35.14 g/l). To the best of our knowledge, this is the first report of the enhancement of ε-PL production through l-lysine feeding to evaluate the use of fermenters. Meanwhile, the role of l-lysine in the promotion of ε-PL production, participating ε-PL synthesis as a whole, was first determined using the l-[U–13C] lysine labeling method. It has been suggested that the bottleneck of ε-PL synthesis in Streptomyces sp. M-Z18 is in the biosynthesis of precursor l-lysine. The information obtained in the present work may facilitate strain improvement and efficient large-scale ε-PL production.  相似文献   

10.
pGTR760 and pGTR761, two new shuttle vectors, withmultiple cloning sites and capable of conjugal transfer from E. coli to Streptomyces sp. were constructed. The poly-3-hydroxybutyrate (PHB) biosynthetic polycistron from Ralstonia eutropha was cloned into the pGTR760 vector to derive the pCABRe plasmid. The pCABRe plasmid was conjugally transferred from E. coli S17-1 to Streptomyces lividans TK64. Fluorescence microscopy of the recombinant and the untransformed S. lividans TK64 revealed presence of polyhydroxyalkanoates (PHAs) in both cell types. GC/GC-MS analysis revealed the accumulated polymer to be polyhydroxyoctanoate (PHO). While the untransformed S. lividans cells accumulate 3.5% PHO of cell dry wt, the recombinant cells accumulate 8% PHO of the cell dry wt. The transformation of S. lividans, however, resulted in slower growth rate, delayed sporulation and impaired pigment formation. Scanning electron microscope analysis revealed broken mycelia probably due to release of accumulated PHO granules from the cells.  相似文献   

11.
In this work, lipase from Arthrobacter sp. was immobilized by sol–gel encapsulation to improve its catalytic properties. Various silanizing agents including vinyl-trimethoxy silane, octyl-trimethoxy silane, γ-(methacryloxypropyl)-trimethoxy silane (MAPTMS) and tetraethoxysilane (TEOS) were chosen as the precursors. Among them, MAPTMS was for the first time utilized to encapsulate lipases, and the prepared enzyme by copolymerization of MAPTMS and TEOS exhibited the highest activity in both the hydrolysis of p-nitrophenyl palmitate and the asymmetric acylation of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one. The effects of various immobilization parameters were investigated. Under the optimum conditions of MAPTMS/TEOS = 1/1 (mol/mol), water/silane molar ratio (R value) = 20 and lipase loading = 0.01 g/mL sol, the total activity of the immobilized enzyme reached up to 13.6-fold of the free form. Moreover, the encapsulated lipase exhibited higher thermal stability than the free form and retained 54% of the original activity after uses for 60 d. Enantioselectivity of enzyme was also improved with an E value of 150 after encapsulation from 85 for the free form.  相似文献   

12.
Cellulase-free xylanase was produced by Streptomyces sp. Ab106 on finely ground cane bagasse at 55 °C. The optimal medium composition was developed by applying the mixture design and linear mathematical program, and evaluated using the Plackett–Burman experimental design. The best composition of basal medium was found by using the mixture design method. The highest xylanase activity, 10.6 IU, was obtained after 6 days of fermentation in shaked flask at 100 rpm, 55 °C, pH 7. Both experimental designs showed that trace elements induced xylanase production. With fermentation in a 5-l fermenter, xylanase activity of 12.5 IU was achieved.  相似文献   

13.
14.
1.Previous studies demonstrated that estrogens, specifically 17-estradiol, the potent, naturally occurring estrogen, are neuroprotective in a variety of models including glutamate toxicity. The aim of the present study is twofold: (1) to assess the requirement for glutamate receptors in neuronal cell death associated with anoxia–reoxygenation in three cell types, SK-N-SH and HT-22 neuronal cell lines and primary rat cortical neuronal cultures, and (2) to evaluate the neuroprotective activity of both 17-estradiol and its weaker isomer, 17-estradiol, in both anoxia-reoxygenation and glutamate toxicity.2.SK-N-SH and HT-22 cell lines, both of which lack NMDA receptors as assessed by MK-801 binding assays, were resistant to both anoxia–reoxygenation and glutamate-induced cell death. In contrast, primary rat cortical neurons, which exhibit both NMDA and AMPA receptors, were sensitive to brief periods of exposure to anoxia–reoxygenation or glutamate. As such, there appears to be an obligatory requirement for NMDA and/or AMPA receptors in neuronal cell death resulting from brief periods of anoxia followed by reoxygenation.3.Using primary rat cortical neuronal cultures, we evaluated the neuroprotective activity of 17-estradiol (1.3 or 133 nM) and 17-estradiol (133 nM) in both anoxia–reoxygenation and excitotoxicity models of cell death. We found that the 133 nM but not the 1.3 nM dose of the potent estrogen, 17-estradiol, protected 58.0, 57.5, and 85.3% of the primary rat cortical neurons from anoxia–reoxygenation, glutamate, or AMPA toxicity, respectively, and the 133 nM dose of the weak estrogen, 17-estradiol, protected 74.6, 81.7, and 85.8% of cells from anoxia–reoxygenation, glutamate, or AMPA toxicity, respectively. These data demonstrate that pretreatment with estrogens can attenuate glutamate excitotoxicity and that this protection is independent of the ability of the steroid to bind the estrogen receptor.  相似文献   

15.
Summary The effect of several parameters (temperature; pH; main carbon source; time and amount of -sitosterol addition; Tween 20, 40, 60, 80; Span 20; pluronic F 68, L 64) on the conversion of -sitosterol to 3-(5-hydroxy-7a-methyl-1-oxo-3a-H-hexahydroindan-4-yl) propionic acid (I) by Nocardia sp. M. 29–40 was investigated. A maximal theoretical yield of 65 mol% I (with respect to substrate added) could be achieved during cultivation at pH 8.0 in presence of 6 g/l Tween 40 or Tween 60. Tween 40 and Tween 60 stimulate -sitosterol cooxidation not by improving the substrate suspension but by providing a fatty acid component as precursor for biosynthesis of surface active cell wall lipids.In memory of Professor David Perlmann  相似文献   

16.
An extracellular halophilic α-amylase was purified from Nesterenkonia sp. strain F using 80 % ethanol precipitation and Q-Sepharose anion exchange chromatography. The enzyme showed a single band with an apparent molecular weight of 110 kDa by SDS-PAGE. The amylase exhibited maximal activity at pH 7-7.5, being relatively stable at pH 6.5-7.5. Optimal temperature for the amylase activity and stability was 45 °C. The purified enzyme was highly active in the broad range of NaCl concentrations (0-4 M) with optimal activity at 0.25 M NaCl. The amylase was highly stable in the presence of 3-4 M NaCl. Amylase activity was not influenced by Ca2?, Rb?, Li?, Cs?, Mg2? and Hg2?, whereas Fe3?, Cu2?, Zn2? and Al3?) strongly inhibited the enzyme activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. K(m) value of the amylase for soluble starch was 6.6 mg/ml. Amylolytic activity of the enzyme was enhanced not only by 20 % of water-immiscible organic solvents but also by acetone, ethanol and chloroform. Higher concentration (50 %) of the water-miscible organic solvents had no significant effect on the amylase activity. To the best of our knowledge, this is the first report on increased activity of a microbial α-amylase in the presence of organic solvents.  相似文献   

17.
We have previously described two forms of an endo-β-1,4-xylanase (XynSW2A and XynSW2B) synthesized by thermotolerant Streptomyces sp. SWU10. Here, we describe another xylanolytic enzyme, designated XynSW1. The enzyme was purified to homogeneity from 2 L of culture filtrate. Its apparent molecular mass was 24 kDa. The optimal pH and temperature were pH 5.0 and 40 °C, respectively. The enzyme was stable in a wide pH ranges (pH 1–11), more than 80 % of initial activity remained at pH 2–11 after 16 h of incubation at 4 °C and stable up to 50 °C for 1 h. Xylobiose and xylotriose were the major xylooligosaccharides released from oat spelt xylan by the action of XynSW1, indicating of endo-type xylanase. The complete xynSW1 gene contains 1,011 bp in length and encode a polypeptide of 336 with 41 amino acids of signal peptide. The amino acid sequence analysis revealed that it belongs to glycoside hydrolase family 11 (GH11). The mature xynSW1 gene without signal peptide sequence was overexpressed in Pichia pastoris KM71H. The recombinant XynSW1 protein showed higher molecular mass due to the differences in glycosylation levels at the six N-glycosylation sites in the amino acid sequence and exhibited better physicochemical properties than those of the native enzyme including higher optimal temperature (60 °C), and specific activity, but lower optimal pH (4.0). Because of their stability in a wide pH ranges, both of native and recombinant enzymes of XynSW1, may have potential application in several industries including food, textile, biofuel, and also waste treatment.  相似文献   

18.
The activity of esterase secreted by conidia of wheat powdery mildew fungus, Blumeria graminis f.?sp. tritici, was assayed using indoxyl acetate hydrolysis, which generates indigo blue crystals. Mature, ungerminated, and germinating conidia secrete esterase(s) on artificial media and on plant leaf surfaces. The activity of these esterases was inhibited by diisopropyl fluorophosphate, which is selective for serine esterases. When conidia were inoculated on wheat leaves pretreated with diisopropyl fluorophosphate, both appressorial germ tube differentiation and symptom development were significantly impaired, indicating an important role of secreted serine esterases in wheat powdery mildew disease establishment.  相似文献   

19.
Abstract

Streptomyces sp. strain SB9 was isolated from perm frost soil samples in Spitsbergen, Arctic Ocean; it grows in a temperature range between 4°C and 28°C. During the survey of biologically active metabolites biosynthesized by this strain, significant amounts of α,α-trehalose (1) and glycerol (2) were detected. The compounds were isolated from the mycelium, were chromatographically separated, and the structures were elucidated on the basis of MS and NMR measurements. A possible role of trehalose in cold adaptation of the strain was examined. It was determined that the mycelium of the strain cultivated at 4°C accumulated 5-fold higher amounts of trehalose in comparison with the cells cultivated at 28°C. The mesofilic reference strains, Streptomyces spectabilis NRRL 2494 and Streptomyces lividans TK64, accumulated 100-fold less trahalose than the psychrotolerant Streptomyces sp. SB9. High amounts of trehalose in the cells could be a reason for adaptation of the strain to life at Arctic conditions.  相似文献   

20.
A strain of long-chain alkane–degrading bacteria, BT1A, was isolated from oil-contaminated soil in Diyarbak?r, in the southeast of Turkey. Morphological, biochemical, and physiological characterization and 16S rRNA gene sequence analysis showed that the strain BT1A was a member of Acinetobacter genus, and it was found to be closely related to Acinetobacter baumannii. The strain BT1A was able to utilize crude petroleum as carbon and energy sources in order to grow. Among the aliphatic hydrocarbons, growth was observed only in the medium containing long-chain alkanes (tridecane, pentadecane, and hexadecane) and squalene. Hexadecane was the most preferred hydrocarbon among the long-chain alkanes. Gas chromatography–mass spectrometry (GC-MS) analysis showed that BT1A degraded 83% of n-alkanes of 1% crude oil in 7 days. The present study indicates that the isolated strain can well be used for biodegradation of hydrocarbons in oil-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号