首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. Upon stimulation by αMSH, MC1R triggers the cAMP and ERK1/ERK2 MAPK pathways. In mouse melanocytes, ERK activation by αMSH binding to Mc1r depends on cAMP, and melanocytes are considered a paradigm for cAMP-dependent ERK activation. However, human MC1R variants associated with red hair, fair skin [red hair color (RHC) phenotype], and increased skin cancer risk display reduced cAMP signaling but activate ERKs as efficiently as wild type in heterologous cells, suggesting independent signaling to ERKs and cAMP in human melanocytes. We show that MC1R signaling activated the ERK pathway in normal human melanocytes and melanoma cells expressing physiological levels of endogenous RHC variants. ERK activation was comparable for wild-type and mutant MC1R and was independent on cAMP because it was neither triggered by stimulation of cAMP synthesis with forskolin nor blocked by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine. Stimulation of MC1R with αMSH did not lead to protein kinase C activation and ERK activation was unaffected by protein kinase C inhibitors. Conversely, pharmacological interference, small interfering RNA studies, expression profiles, and functional reconstitution experiments showed that αMSH-induced ERK activation resulted from Src tyrosine kinase-mediated transactivation of the stem cell factor receptor, a receptor tyrosine kinase essential for proliferation, differentiation, and survival of melanocyte precursors, thus demonstrating a functional link between the stem cell factor receptor and MC1R. Moreover, this transactivation phenomenon is unique because it is unaffected by natural mutations impairing canonical MC1R signaling through the cAMP pathway.  相似文献   

2.
Cecilia Herraiz 《FEBS letters》2009,583(19):3269-3274
Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. MC1R activates cAMP and mitogen-activated protein kinase ERK1/ERK2 signalling. When expressed in rat pheochromocytoma cell line cells, the R151C, R160W and D294H MC1R variants associated with melanoma and impaired cAMP signalling mediated ERK activation and ERK-dependent, agonist-induced neurite outgrowth comparable with wild-type. Dose-response curves for ERK activation and cAMP production indicated higher sensitivity of the ERK response. Thus, the melanoma-associated MC1R mutations impact differently on cAMP and ERK signalling, suggesting that cAMP is not responsible for functional coupling of MC1R to the ERK cascade.  相似文献   

3.
The melanocortins (alpha-melanocyte-stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain-of-function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss-of-function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss-of-function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist-independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist-independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over-expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse E(so-3J) allele. Stable or transient expression of wild-type MC1R, but not of loss-of-function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs-coupled receptors. Therefore, human MC1R displays a strong agonist-independent constitutive activity.  相似文献   

4.
The melanotropic actions of alpha-melanocyte-stimulating hormone (alpha-MSH) and other melanocortins are mediated by activation of the melanocortin 1 receptor (MC1R). This G protein-coupled receptor is positively coupled to Gs and triggers the cyclic adenosine mono-phosphate (cAMP) pathway. Mutations of the MC1R gene are associated with skin type and pigmentation phenotypes, and with increased risk of skin cancers. Genetic studies have demonstrated an heterozygote carrier effect for these associations, suggesting the importance of variant allele dosage. This could be accounted for, at least partially, if the number of MC1R molecules, rather than the Gs protein or the effector enzyme, adenylyl cyclase, is limiting for the activation of the signalling pathway. However, the nature of the limiting factor(s) in MC1R signalling has not been investigated. We addressed this question by comparing the cAMP output of clones of human melanoma cell lines enriched in MC1R by stable transfection. We also analysed heterologous cell systems widely used for functional studies of MC1R. We show that cAMP production in clones of Chinese hamster ovary cells stably expressing the MC1R is a linear function of receptor number up to high, supraphysiological levels of approximately 50,000 alpha-MSH binding sites per cell. Enrichment of human melanoma cell lines with MC1R also results in increased cAMP levels, with a small leftward shift of the agonist dose-response curves. Therefore, at physiological expression levels second-messenger generation is dependent on receptor density. Within melanoma cells and also likely in normal melanocytes, MC1R appears the limiting factor controlling the output of the cAMP signalling pathway.  相似文献   

5.
The melanotropic actions of α‐melanocyte‐stimulating hormone (α‐MSH) and other melanocortins are mediated by activation of the melanocortin 1 receptor (MC1R). This G protein‐coupled receptor is positively coupled to Gs and triggers the cyclic adenosine mono‐phosphate (cAMP) pathway. Mutations of the MC1R gene are associated with skin type and pigmentation phenotypes, and with increased risk of skin cancers. Genetic studies have demonstrated an heterozygote carrier effect for these associations, suggesting the importance of variant allele dosage. This could be accounted for, at least partially, if the number of MC1R molecules, rather than the Gs protein or the effector enzyme, adenylyl cyclase, is limiting for the activation of the signalling pathway. However, the nature of the limiting factor(s) in MC1R signalling has not been investigated. We addressed this question by comparing the cAMP output of clones of human melanoma cell lines enriched in MC1R by stable transfection. We also analysed heterologous cell systems widely used for functional studies of MC1R. We show that cAMP production in clones of Chinese hamster ovary cells stably expressing the MC1R is a linear function of receptor number up to high, supraphysiological levels of approximately 50 000 α‐MSH binding sites per cell. Enrichment of human melanoma cell lines with MC1R also results in increased cAMP levels, with a small leftward shift of the agonist dose–response curves. Therefore, at physiological expression levels second‐messenger generation is dependent on receptor density. Within melanoma cells and also likely in normal melanocytes, MC1R appears the limiting factor controlling the output of the cAMP signalling pathway.  相似文献   

6.
The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.  相似文献   

7.
The alpha-melanocyte-stimulating hormone (alphaMSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of alphaMSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent alphaMSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships.  相似文献   

8.
The melanocortins (α‐melanocyte‐stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain‐of‐function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss‐of‐function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss‐of‐function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist‐independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist‐independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over‐expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse Eso‐3J allele. Stable or transient expression of wild‐type MC1R, but not of loss‐of‐function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs‐coupled receptors. Therefore, human MC1R displays a strong agonist‐independent constitutive activity.  相似文献   

9.
The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.  相似文献   

10.
MC1R and the response of melanocytes to ultraviolet radiation   总被引:5,自引:0,他引:5  
The constitutive color of our skin plays a dramatic role in our photoprotection from solar ultraviolet radiation (UVR) that reaches the Earth and in minimizing DNA damage that gives rise to skin cancer. More than 120 genes have been identified and shown to regulate pigmentation, one of the key genes being melanocortin 1 receptor (MC1R) that encodes the melanocortin 1 receptor (MC1R), a seven-transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Modulation of MC1R function regulates melanin synthesis by melanocytes qualitatively and quantitatively. The MC1R is regulated by the physiological agonists alpha-melanocyte-stimulating hormone (alphaMSH) and adrenocorticotropic hormone (ACTH), and antagonist agouti signaling protein (ASP). Activation of the MC1R by binding of an agonist stimulates the synthesis of eumelanin primarily via activation of adenylate cyclase. The significance of cutaneous pigmentation lies in the photoprotective effect of melanin, particularly eumelanin, against sun-induced carcinogenesis. Epidermal melanocytes and keratinocytes respond to UVR by increasing their expression of alphaMSH and ACTH, which up-regulate the expression of MC1R, and consequently enhance the response of melanocytes to melanocortins. Constitutive skin pigmentation dramatically affects the incidence of skin cancer. The pigmentary phenotype characterized by red hair, fair complexion, inability to tan and tendency to freckle is an independent risk factor for all skin cancers, including melanoma. The MC1R gene is highly polymorphic in human populations, and allelic variation at this locus accounts, to a large extent, for the variation in pigmentary phenotypes and skin phototypes (SPT) in humans. Several allelic variants of the MC1R gene are associated with the red hair and fair skin (RHC) phenotype, and carrying one of these variants is thought to diminish the ability of the epidermis to respond to DNA damage elicited by UVR. The MC1R gene is considered a melanoma susceptibility gene, and its significance in determining the risk for skin cancer is of tremendous interest.  相似文献   

11.
The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled surface protein found on melanocytes that binds melanocyte-stimulating hormone and mediates activation of adenylyl cyclase and generation of the second messenger cyclic AMP (cAMP). MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-of-function polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase-activating or phosphodiesterase-inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. In this paper, we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R’s role in the protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses.  相似文献   

12.
The melanocortin 1 receptor (MC1R) is a G protein‐coupled receptor crucial for the regulation of melanocyte proliferation and function. Upon binding melanocortins, MC1R activates several signaling cascades, notably the cAMP pathway leading to synthesis of photoprotective eumelanin. Polymorphisms in the MC1R gene are a major source of normal variation of human hair color and skin pigmentation, response to ultraviolet radiation (UVR), and skin cancer susceptibility. The identification of a surprisingly high number of MC1R natural variants strongly associated with pigmentary phenotypes and increased skin cancer risk has prompted research on the functional properties of the wild‐type receptor and frequent mutant alleles. We summarize current knowledge on MC1R structural and functional properties, as well as on its intracellular trafficking and signaling. We also review the current knowledge about the function of MC1R as a skin cancer, particularly melanoma, susceptibility gene and how it modulates the response of melanocytes to UVR.  相似文献   

13.
The melanocortin-4 receptor (MC4R) is a Family A G protein-coupled receptor that plays an essential role in regulating energy homeostasis, including both energy intake and expenditure. Mutations leading to a reduced MC4R function confer a major gene effect for obesity. More than 170 distinct mutations have been identified in humans. In addition to the conventional Gs-stimulated cAMP pathway, the MC4R also activates MAPKs, especially ERK1/2. We also showed there is biased signaling in the two signaling pathways, with inverse agonists in the Gs-cAMP pathway acting as agonists for the ERK1/2 pathway. In the current study, we sought to determine whether defects in basal or agonist-induced ERK1/2 activation in MC4R mutants might potentially contribute to obesity pathogenesis in patients carrying these mutations. The constitutive and ligand-stimulated ERK1/2 activation were measured in wild type and 73 naturally occurring MC4R mutations. We showed that nineteen mutants had significantly decreased basal pERK1/2 level, and five Class V variants (where no functional defects have been identified previously), C40R, V50M, T112M, A154D and S295P, had impaired ligand-stimulated ERK1/2 activation. Our studies demonstrated for the first time that decreased basal or ligand-stimulated ERK1/2 signaling might contribute to obesity pathogenesis caused by mutations in the MC4R gene. We also observed biased signaling in 25 naturally occurring mutations in the Gs-cAMP and ERK1/2 pathways.  相似文献   

14.
Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV‐signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose‐dependent generation of hydrogen peroxide in UV‐irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with α‐melanocortin (α‐MSH) reduced the UV‐induced generation of 7,8‐dihydro‐8‐oxyguanine (8‐oxodG), a major form of oxidative DNA damage. Pretreatment with α‐MSH also increased the protein levels of catalase and ferritin. The effect of α‐MSH on 8‐oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss‐of‐function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP‐YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by α‐MSH. Our data unravel some mechanisms by which α‐MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss‐of‐function MC1R with melanoma.  相似文献   

15.
Chai B  Li JY  Zhang W  Newman E  Ammori J  Mulholland MW 《Peptides》2006,27(11):2846-2857
The melanocortin-4 receptor (MC4R) is a seven transmembrane member of the melanocortin receptor family. The GT1-1 cell line exhibits endogenous expression of MC4R. In this study, GT1-1 cells were used to study MC4R signaling pathways and to examine the effects of melanocortin receptor agonist NDP-MSH on apoptosis. MC4R mRNA expression was demonstrated by RT-PCR. Functional melanocortin receptor expression was implied by specific binding of NDP-MSH and cAMP production. NDP-MSH-stimulated GnRH release in a dose-dependent manner. Serum deprivation-induced apoptosis in GT1-1 cells, and the NDP-MSH inhibited this effect. The melanocortin receptor antagonist SHU9119 blocked the antiapoptotic actions of NDP-MSH, and the MAP kinase inhibitor PD98059 significantly attenuated the antiapoptotic effect. NDP-MSH-stimulated ERK1/2 phosphorylation in a dose-dependent manner. ERK1/2 phosphorylation could be abolished by SHU9119. In GT1-1 cells, melanocortin receptor activation causes ERK1/2 phosphorylation. In these cells, MC4R activation is also associated with antiapoptotic effects.  相似文献   

16.
17.
18.
黑色素生成反应是受黑素皮质素受体l(MClR)调节的。MClR是G蛋白偶联受体(GPCR)超家族的成员之一,它在表皮和毛囊的黑色素细胞中表达。被促肾上腺皮质激素和α-促黑素激活的MClR,积极地与cAMP信号通路偶联,刺激黑色素合成,它也是褐黑素形成的一个通道。MClR的功能行为与GPCR信号出现的概念一致,包括聚合体偶联到更多的信号通路。另外,MClR也显示了独特的性质,如不寻常的高数量的自然变异通常与表型有关。因此,MClR是研究GPCR功能的一个理想模型。对MClR的结构和功能进行了简要综述。  相似文献   

19.
The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号