首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A substantial sampling among domestic human campylobacter cases, chicken process lots, and cattle at slaughter was performed during the seasonal peak of human infections. Campylobacter jejuni isolates (n = 419) were subtyped using pulsed-field gel electrophoresis with SmaI, and isolates representing overlapping types (n = 212) were further subtyped using KpnI for restriction. The SmaI/KpnI profiles of 55.4% (97/175) of the human isolates were indistinguishable from those of the chicken or cattle isolates. The overlapping SmaI/KpnI subtypes accounted for 69.8% (30/43) and 15.9% (32/201) of the chicken and cattle isolates, respectively. The occurrence of identical SmaI/KpnI subtypes with human C. jejuni isolates was significantly associated with animal host species (P < 0.001). A temporal association of isolates from chickens and patients was possible in 31.4% (55/175) of the human infections. Besides chickens as sources of C. jejuni in the sporadic infections, the role of cattle appears notable. New approaches to restrict the occurrence of campylobacters in other farm animals may be needed in addition to hygienic measures in chicken production. However, only about half of the human infections were attributable to these sources.The incidence of human enteric infections caused by campylobacters is highest in the summer months, showing a consistent peak at the end of July in Finland (www.ktl.fi/attachments/suomi/julkaisut/julkaisusarja_b/2008/2008b09.pdf), as well as in other Nordic countries (16, 33). Almost 70% of campylobacter infections detected in July and August in Finland are domestically acquired, whereas the annual average proportion of domestic cases is about 30%, and most of them are caused by Campylobacter jejuni (30). The prevalence of campylobacters in Finnish broiler flocks peaks simultaneously with the human cases (7), and similar sero- and genotypes have been reported among human and poultry strains isolated in Finland and in other countries (5, 8, 21-23). Several epidemiological studies have identified the handling and consumption of raw or undercooked poultry meat as a major risk factor for campylobacter enteritis (for example, see references 18, 20, and 41), whereas opposite conclusions about the significance of the consumption of chicken meat were drawn from the Swedish case-control study among young children (2) and an extensive Danish register-based study (6).Data derived from the genotyping studies of C. jejuni isolates from human infections and animals support the current suggestion that poultry is the most important single source of sporadic campylobacteriosis (12, 22, 29). However, several reports on genotype comparisons suggest that poultry may be a less significant source of campylobacters than generally thought, and other animal reservoirs should also be considered notable sources of campylobacters pathogenic to humans (3, 8, 17, 27, 31). Studies of the temporal occurrence of campylobacters in human infections and poultry flocks have revealed that the peak in prevalence, as well as some of the overlapping sero- and genotypes, is detected in humans prior to being detected in poultry (21, 28).Although cattle are well-known carriers of campylobacters, the survival of these fragile organisms in beef is poor (39, 42). In recent years, some authors (1, 4, 10) have raised the question of an indirect association between cattle and human cases. In a Finnish study combining data from the multilocus sequence typing of campylobacters isolated from production animals and from epidemiological studies of human cases, significant associations emerged between certain sequence-type complexes from human infections and contact with cattle, the consumption of unpasteurized milk, or the tasting or consumption of raw minced meat (23).The aim of this study was to investigate the contributions of poultry and cattle as sources of human C. jejuni infections in Finland by comparing over a limited time frame the macrorestriction profiles obtained from pulsed-field gel electrophoresis (PFGE) analysis of a geographically representative collection of C. jejuni isolates from domestically acquired sporadic human infections, chicken process lots, and cattle.  相似文献   

2.
Multilocus phylogenetic analysis of small-subunit (SSU) rRNA and actin from Cryptosporidium molnari clustered this species with the C. molnari-like genotype of an isolate from the guppy, although the two fish isolates seem to be distinct species. The analysis of available piscine genotypes provides some support for cladistic congruence of the genus Piscicryptosporidium, but additional piscine genotypes are needed.Recent reviews accept more than 20 valid cryptosporidium species (7, 20), and characterization of additional isolates is expanding this list rapidly (http://www.vetsci.usyd.edu.au/staff/JanSlapeta/icrypto/index.htm). In addition, numerous morphotypes or genotypes have been proposed whose taxonomic affiliation is unsettled due to incomplete characterization according to minimum consensus standards (5, 7, 24). Five species have been proposed for fish isolates (15), but only Cryptosporidium molnari and Cryptosporidium scophthalmi (2, 4) stand as valid species (20), although not without discussion (7). Fish cryptosporidia present some unique features, which have even led to the genus Piscicryptosporidium being proposed (13). However, lack of genetic support keeps this genus and several fish morphotypes as incertae sedis (12, 15, 24). Detailed biological data on C. molnari and C. scophthalmi have been previously presented (3, 18, 19), but no molecular characterization has yet been conducted, thus hampering species identification of other fish isolates (7, 24) and evaluation of their relationships within the genus (15). Ribosomal and actin gene data on an isolate from guppy fish (Poecilia reticulata) have been obtained, and preliminary analyses of these sequences indicated a basal position in the cryptosporidial tree (17). Although it was regarded as C. molnari-like, biological characterization of this isolate was limited. The purpose of this work was to provide the necessary C. molnari comparative genetic data and to clarify the relationship of available fish isolates in a phylogenetic context.  相似文献   

3.
Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.Vibrio vulnificus causes severe wound infections and life-threatening septicemia (mortality, >50%), primarily in patients with underlying chronic diseases (10, 19, 23) and primarily from raw oyster consumption (21). This Gram-negative halophile is readily recovered from oysters (27, 35, 43) and fish (14) and was initially classified into two biotypes (BTs) based on growth characteristics and serology (5, 18, 39). Most human isolates are BT1, while BT2 is usually associated with diseased eels (1, 39). An outbreak of wound infections from aquacultured tilapia in Israel (6) revealed a new biotype (BT3). Phenotypic assays do not consistently distinguish biotypes (33), but genetic analyses have helped resolve relationships (20). A 10-locus multilocus sequence typing (MLST) scheme (8, 9) and a similar analysis of 6 loci (13) segregated V. vulnificus strains into two clusters. BT1 strains were in both clusters, while BT2 segregated into a single cluster and BT3 was a genetic mosaic of the two lineages. Significant associations were observed between MLST clusters and strain origin: most clinical strains (BT1) were in one cluster, and the other cluster was comprised mostly of environmental strains (some BT1 and all BT2). Clinical isolates were also associated with a unique genomic island (13).The relationship between genetic lineages and virulence has not been determined, and confirmed virulence genes are universally present in V. vulnificus strains from both clinical and environmental origins (19, 23). However, segregation of several polymorphic alleles agreed with the MLST analysis and correlated genotype with either clinical or environmental strain origin. Alleles include 16S rRNA loci (15, 26, 42), a virulence-correlated gene (vcg) locus (31, 41, 42), and repetitive sequence in the CPS operon (12). DiversiLab repetitive extrageneic palindromic (rep-PCR) analysis also confirmed these genetic distinctions and showed greater diversity among clinical strains (12).Wound infections associated with tilapia in Israel implicated aquaculture as a potential source of V. vulnificus in human disease (6, 40). Tilapia aquaculture is increasing rapidly, as shown by a 2.8-fold increase in tons produced from 1998 to 2007 (Food and Agriculture Organization; http://www.fao.org/fishery/statistics/en). Therefore, presence of V. vulnificus in tilapia aquaculture was examined in Bangladesh, a region that supports both coastal and freshwater sources of industrial-scale aquaculture. V. vulnificus strains were recovered from market fish, netted fish, and water samples, and the phylogenetic relationship among strains was examined relative to clinical and environmental reference strains collected elsewhere.  相似文献   

4.
Source attribution using molecular subtypes has implicated cattle and sheep as sources of human Campylobacter infection. Whether the Campylobacter subtypes associated with cattle and sheep vary spatiotemporally remains poorly known, especially at national levels. Here we describe spatiotemporal patterns of prevalence, bacterial enumeration, and subtype composition in Campylobacter isolates from cattle and sheep feces from northeastern (63 farms, 414 samples) and southwestern (71 farms, 449 samples) Scotland during 2005 to 2006. Isolates (201) were categorized as sequence type (ST), as clonal complex (CC), and as Campylobacter jejuni or Campylobacter coli using multilocus sequence typing (MLST). No significant difference in average prevalence (cattle, 22%; sheep, 25%) or average enumeration (cattle, 2.7 × 104 CFU/g; sheep, 2.0 × 105 CFU/g) was found between hosts or regions. The four most common STs (C. jejuni ST-19, ST-42, and ST-61 and C. coli ST-827) occurred in both hosts, whereas STs of the C. coli ST-828 clonal complex were more common in sheep. Neither host yielded evidence for regional differences in ST, CC, or MLST allele composition. Isolates from the two hosts combined, categorized as ST or CC, were more similar within than between farms but showed no further spatiotemporal trends up to 330 km and 50 weeks between farm samples. In contrast, both regions yielded evidence for significant differences in ST, CC, and allele composition between hosts, such that 65% of isolates could be attributed to a known host. These results suggest that cattle and sheep within the spatiotemporal scales analyzed are each capable of contributing homogeneous Campylobacter strains to human infections.Campylobacter species are the largest cause of bacterial intestinal infection in the developed and developing world (3). Almost all reported human Campylobacter infections in the United Kingdom are caused by Campylobacter jejuni, which accounts for approximately 92% of cases, and Campylobacter coli, which accounts for most of the rest (8). Campylobacter species are carried asymptomatically in a wide range of host animals and excreted into the environment in feces (23). Humans can be infected by several routes including consumption of contaminated water (14) or food (23); indeed, case control studies indicate that consumption of poultry meat is a risk factor (11, 12, 28), but other foods including unpasteurized milk (33) and meat from cattle and sheep contaminated at the abattoir might be important (30).Cattle and sheep on farms are major hosts of Campylobacter, with up to 89% of cattle herds (31) and up to 55% of sheep flocks (26) being infected. The prevalence of C. jejuni and C. coli combined, estimated at the level of individual animals from fecal specimens, is 23 to 54% in cattle (22, 25) and up to 20% in sheep (37). Campylobacter enumeration in feces shed from individual animals ranges from <102 to 107 CFU/g in both hosts (31), and the concentration shed varies with time. Meat products of cattle and sheep, by contrast, have generally lower levels of Campylobacter contamination. Prevalence values are 0.5 to 4.9% in surveys of retail beef (11a, 17, 36) and 6.9 to 12.6% in surveys of retail lamb and mutton (17, 35).Clinical Campylobacter strains can be attributed to infection sources in animals by comparing subtype frequencies in clinical cases with those in different candidate sources, including cattle, sheep, pigs, and the physical environment. Campylobacter subtype data sets are most transferable when subtypes are defined as sequence type (ST) using multilocus sequence typing (MLST). Three recent MLST-based studies based in northwestern England (34), mainland Scotland (29), northeastern Scotland (32), and New Zealand (24) have used source attribution models to infer the source of human clinical infection. The results suggest that retail chicken is the source with the highest (55 to 80%) attribution while cattle and sheep combined are ranked second (20 to 40%). These attribution models require further empirical validation but appear to be showing broadly similar results.Attribution of human Campylobacter infections to cattle and sheep raises the question of whether Campylobacter subtypes infecting farm cattle and sheep are generally homogeneous or tend to have spatiotemporal structure. Regarding spatial differences, isolates of C. jejuni from a 100-km2 study of farmland area with dairy cattle and sheep in northwestern England displayed increased genetic similarity up to 1 km apart but no further trend over distances of 1 to 14 km apart (7), and isolates from three dairy cattle farms 2 or 5 km apart in the same area demonstrated differences in the frequencies of strains of clonal complexes (CCs) ST-42 and ST-61 (15). Regarding temporal differences, isolates of C. jejuni from five dairy cattle farms in the same area demonstrated differences in the frequency of strains of CC ST-61 between the spring and summer of 2003 (15). Lastly, regarding host-associated strains, STs of CCs ST-21, ST-42, and ST-61 are associated with cattle, and the more limited data for STs from sheep also show the presence of ST-21 and ST-61 (7, 15).The larger-scale spatiotemporal structure of Campylobacter strains from cattle and sheep is poorly known. The main aims of the present study were (i) to characterize C. jejuni and C. coli from cattle and sheep from two distinct geographical Scottish regions in terms of Campylobacter prevalence and enumeration and C. jejuni and C. coli ST composition and (ii) to estimate the extent of host association of C. jejuni and C. coli STs from cattle versus sheep.  相似文献   

5.
Campylobacter jejuni is widely distributed in the environment, and river water has been shown to carry high levels of the organism. In this study, 244 C. jejuni isolates from three river catchment areas in New Zealand were characterized using multilocus sequence typing. Forty-nine of the 88 sequence types identified were new. The most common sequence types identified were ST-2381 (30 isolates), ST-45 (25 isolates), and ST-1225 (23 isolates). The majority of the sequence types identified in the river water could be attributed to wild bird fecal contamination. Two novel clonal complexes (CC) were identified, namely, CC ST-2381 (11 sequence types, 46 isolates) and CC ST-3640 (6 sequence types, 12 isolates), in which all of the sequence types were new. CC ST-2381 was the largest complex identified among the isolates and was present in two of the three rivers. None of the sequence types associated with the novel complexes has been identified among human isolates. The ST-2381 complex is not related to complexes associated with cattle, sheep, or poultry. The source of the novel complexes has yet to be identified.Contamination of the environment by bacterial pathogens is a significant health concern, as it provides a continuous source of organisms for the infection and reinfection of humans and animals. Enteric pathogens gain entry into the environment through the discharge of sewage into water and via contamination from animal feces (22). Fecal contamination is responsible for the continued presence and spread of a range of pathogenic organisms, including Campylobacter, norovirus, and Escherichia coli O157. Determining the roles of various environmental sources in human enteric disease requires an understanding of the distribution, survival, population structure, and pathogenic potential of the pathogens in the environment.Campylobacter is the most common cause of gastrointestinal illness in the industrialized world (17), imposing significant economic costs on health systems, and is associated with a number of neurological sequelae (32, 33). The majority of human campylobacter infections are caused by Campylobacter jejuni (90%), with Campylobacter coli mostly responsible for the remainder. Although Campylobacter has been isolated from a wide range of animals (41) and birds (47, 48), contaminated poultry and poultry products remain the most significant sources of human infections (10, 38, 50, 51). Campylobacter is a spiral gram-negative organism that grows best under low-oxygen conditions at 42°C. The organism is unable to grow outside an animal host, and survival in the environment is dependent on ambient temperature, oxygen levels, and sunlight.Studies worldwide examining rivers and waterways show that there is significant contamination by Campylobacter, with the sources being sewage outflow, direct fecal deposition, and pasture runoff (12, 22, 34, 37, 39). Similarly, coastal waters and estuaries can be contaminated by either sewage or bird fecal deposition (23, 35). The inability of Campylobacter to grow in the environment and its sensitivity to sunlight are thought to ensure that the organism is eventually purged from the system. However, the high levels of the organism identified in water systems have been highlighted as a risk for human infection.The characterization of campylobacter populations by multilocus sequence typing (MLST) has shown that the organism is weakly clonal and that certain clonal complexes are associated with particular animals (5, 9, 26). Isolates from human cases of infection show a wide variety of sequence types and many clonal complexes. Source attribution studies using MLST have identified poultry as causing approximately 60% of human infections (14, 38, 50). Cattle have been identified as a potential source of infection due to the high level of similarity between bovine and human strains (18, 19). There remains, however, a significant number of infections for which the source is not certain.New Zealand has one of the highest rates of campylobacteriosis in the developed world. This is due to the significant quantity of fresh chicken consumed coupled with high levels of contamination found in poultry products (1, 10, 51, 52). Campylobacter has been isolated from a range of environmental sources within New Zealand, including its rivers and streams (12, 37). Isolation rates for rivers in New Zealand range from 55 to 90%, comparable to results of studies overseas, and show the same seasonal variation as that seen elsewhere in the world (20). Pulsed-field gel electrophoresis (PFGE) analysis identified indistinguishable macrorestriction profiles for cattle, human, and river isolates, suggesting river water as a potential source of infection (8). In this study, C. jejuni isolates from three rivers in New Zealand, two on the South Island and one on the North Island, were characterized using MLST.  相似文献   

6.
Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells.Lactobacillus crispatus can persist in the vertebrate gastrointestinal tract and is among the most prevalent species of the Lactobacillus-dominated human vaginal microbiota (2, 9, 13, 14). It belongs to the so-called acidophilus group (3), which has attracted interest because some of its species are important factors in the production of fermented foods (12) and some can, at least transiently, colonize the human host (2, 9, 13, 14). Moreover, some specific strains, mainly L. acidophilus NCFM and L. johnsonii NCC 533, have received prominence as intestinal-health-promoting microbes (4). Although the genomes of seven members of the acidophilus complex have been sequenced to date (12), the genome sequences of L. crispatus and other predominant lactobacillar species in the urogenital flora have mostly remained obscure. Vaginal lactobacilli can have an important role in controlling the health of the host (2, 14). They can, for example, positively influence and stabilize the host''s vaginal microbiota via the production of compounds that are acidic or exert a direct inhibiting action toward pathogenic bacteria (2, 14). In addition to the antimicrobial compounds, the competitive exclusion of pathogens is another mechanism by which the host''s microbiota can be balanced (2). L. crispatus ST1 was originally isolated from the crop of a chicken, and PCR profiling of L. crispatus isolates has verified it to be an abundant colonizer of the chicken crop (6, 8). It also displays a strong protein-dependent adhesion to the epithelial cells of the human vagina and has been shown to inhibit the adhesion of avian pathogenic Escherichia coli (6, 7).The genome was sequenced (18× coverage) using a 454 pyrosequencer with GS FLX chemistry (Roche). The contig order was confirmed and gaps were filled by sequencing PCR fragments from the genomic DNA template using ABI 3730 and Big Dye chemistry (Applied Biosystems). Genomic data were processed using the Staden Package (11) and gsAssembler (Roche). Coding sequences (CDSs) were predicted using Glimmer3 (5) followed by manual curation of the start sites. The remaining intergenic regions were reanalyzed for missed CDSs by using BlastX (1). Annotation transfer was performed based on a BlastP search, followed by Blannotator analysis using default settings (http://ekhidna.biocenter.helsinki.fi/poxo/blannotator) and manual verification. Orthologous groups between the different lactobacillar proteomes were identified using OrthoMCL (10).The genome of L. crispatus ST1 consists of a single circular chromosome 2.04 Mbp in size, with an overall G+C content of 37%, without any plasmids. There are 64 tRNA genes, 4 rRNA operons, and 2 CRISPR loci. Out of the 2,024 predicted CDSs, a putative function was assigned to 77%, whereas 10% of the CDSs were annotated as conserved and 13% as novel. Based on the orthologous grouping, 302 (15%) of the CDSs encoded by ST1 have no detectable homologs in any of the Lactobacillus proteomes published to date.  相似文献   

7.
8.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

9.
10.
11.
12.
13.
To gain insights into the evolutionary origin, emergence, and pathogenicity of the etiologic agent of plague, we have sequenced the genomes of four Yersinia pestis strains isolated from the zoonotic rodent reservoir in foci of endemic plague in China. These resources enable in-depth studies of Y. pestis sequence variations and detailed whole-genome comparisons of very closely related genomes from the supposed site of the origin and the emergence of global pandemics of plague.Here we report on the genomes of Yersinia pestis strains B42003004, K1973002, E1979001, and F1991016, which represent a sample of the genetic diversity found in four foci of endemic plague in China (24). Y. pestis bv. orientalis strain F1991016 was isolated in 1991 from Cangyuan County, China, from a rat (Rattus flavipectus), and Y. pestis bv. antiqua strain E1979001 was isolated in 1979 from Jianchuan, China, from a vole (Eothenomys miletus). Both Y. pestis strains K1973002 and B42003004 of biovars medievalis and antiqua, respectively, originate from marmota species (Marmota himalayana Hetian 1973; Marmota baibacina Wenquan 2003) (24). Genome analyses of these key isolates outline the details of microevolution of the plague bacterium, as these isolates represent important evolutionary milestones of the species, which is thought to have originated in Central Asia as a clonal descendant of Yersinia pseudotuberculosis (1). Genomic DNA was subjected to whole-genome shotgun sequencing and closure strategies as previously described (15). Plasmid (pHOS2) and fosmid (pCC1fos) libraries were constructed, with insert sizes of 4 to 6 kb and 30 to 40 kb, respectively. An average of 67,000 high-quality Sanger reads (total, 268,160) was obtained with an 860-bp average read length. The genomes with an average 12-fold read coverage depth were assembled using a Celera Assembler (11) and manually annotated using Manatee (http://manatee.sourceforge.net/). Genomic architectures were compared using Mauve (5, 18), and proteomes were analyzed with the BLAST score ratio tool (17).The young evolutionary history of the species and resulting homogenous population structure is reflected in a high degree of proteome conservation between the sequenced isolates and the modern strain CO92 (16). Y. pestis pathogenicity is anchored in its mobile inventory, and typically, isolates harbor three virulence plasmids, the species-specific plasminogen activator and murine toxin plasmids and the low-calcium-response plasmid pCD (23). Their pCD-borne lcrV antigen shows a genetic makeup identical to that of CO92 (2, 16). The insertion sequence element expansion clearly distinguishes these Central Asian isolates from the progenitor Y. pseudotuberculosis (3, 8). Comprehensive analyses reveal a lack of genome-wide synteny and suggest massive intrachromosomal rearrangements, a characteristic feature of Y. pestis genome evolution (6, 8). Besides insertion sequence element abundance, we observed isolate-specific propagation patterns that not only shaped the reorganization of the genomic architecture but also are known to drive microevolutionary adaptation in Y. pestis (4, 9, 14, 21, 24). Based upon the phenotypic and genotypic features that differentiate these isolates (13, 20, 24), B42003004 belongs to the most ancient Y. pestis lineage known to exist in China; hence, it is phylogenetically thought to be closest to the species progenitor Y. pseudotuberculosis (22). We studied metabolic genes that determine their biovar classification and investigated the underlying genetic determinants (24). Isolate K1973002 is defective in the nitrate reductase napA gene, similar to strain KIM (7), and represents the results of the evolutionary processes implicated in the biovar conversion from antiqua to medievalis. Isolate F1991016 carries an in-frame deletion in the glycerol-3-phosphate dehydrogenase glpD gene (19), similar to strain CO92 (16), and characteristic of the antiqua-to-orientalis conversion. The observed genetic traits strengthen the hypothesis that biovars medievalis and orientalis arose through parallel evolution from a glycerol- and nitrate-positive antiqua progenitor due to the acquisition of independent mutations (1, 10, 14). Variable-number tandem-nucleotide-repeat alleles (12) (allele K, K1973002; allele K, B42003004; allele P, E1979001; allele G, F1991016) are not biovar specific and are not discriminative enough to differentiate these isolates, which clearly supports a population-based phylogeny, as introduced by Achtman et al. (1).The whole-genome draft sequences of these evolutionary key isolates of Y. pestis will facilitate additional bioinformatic and phylogenetic analyses. The availability of high-quality Sanger sequences is crucial to resolve the genetically homogenous population structure and to shed light on Y. pestis speciation. Understanding the plasticity and genome dynamics further aids in forensic and epidemiological analyses by setting up the basis for an accurate and robust typing system for plague surveillance and promotes diagnostics development and control measures.  相似文献   

14.
Three repetitive-element PCR techniques were evaluated for the ability to type strains of Lactobacillus species commonly identified in the chicken gastrointestinal tract. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) produced species- and strain-specific profiles for Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri isolates. The technique typed strains within these species equally as well as pulsed-field gel electrophoresis. DNA concentration and quality did not affect the ERIC-PCR profiles, indicating that this method, unlike other high-resolution methods, can be adapted to high-throughput analysis of isolates. Subsequently, ERIC-PCR was used to type Lactobacillus species diversity of a large collection of isolates derived from chickens grown under commercial and necrotic enteritis disease induction conditions. This study has illustrated, for the first time, that there is great strain diversity within each Lactobacillus species present and has revealed that chickens raised under commercial conditions harbor greater species and strain diversity than chickens raised under necrotic enteritis disease induction conditions.Lactobacilli are normal inhabitants within the microflora of the chicken gastrointestinal tract (GIT) (27, 39). Species frequently identified within the chicken GIT include Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri (1, 7, 27). The first three of these species are members of the Lactobacillus acidophilus complex (LAC) (22, 32), a closely related group of species which are difficult to differentiate using traditional techniques, such as physiological and biochemical tests (34). While molecular methods, such as DNA-DNA hybridization (22), ribotyping (71), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (19), randomly amplified polymorphic DNA PCR (19), and 16S rRNA gene sequencing (41), have been used with some success, many of these techniques are not readily adaptable to high-throughput applications required for large-scale ecological studies.While numerous studies have reported Lactobacillus species distribution within the chicken GIT, the strain diversity within species has not been explored. Previously, Hagen et al. (28) investigated L. gallinarum isolates present within the crops of commercial chickens, revealing a high level of strain diversity among the isolates examined (17 strains represented among 38 isolates). These results indicate that there could be great diversity within and among the lactobacilli present within the chicken GIT. Examining and typing large numbers of lactobacilli from the chicken GIT to the strain level may facilitate a better understanding of microflora dynamics and niche competition. These studies may also result in the identification of strains which could be used in competitive exclusion applications and potentially in the development of probiotics or live vectors for the delivery of therapeutic recombinant proteins to specific sites within the chicken GIT.Lactobacilli have been proposed as possible competitive exclusion agents or probiotics (30, 36, 42) against Clostridium perfringens, the causative agent of necrotic enteritis (NE) in broiler chickens. The withdrawal of antimicrobial growth promoters in Europe has led to an increase in the incidence of NE (10, 64), prompting the investigation of alternative methods for controlling C. perfringens in the broiler chicken GIT. Various models have been developed to study NE under research conditions, as recently reviewed by Dahiya et al. (15). The conditions used in these NE models and the effects they have on GIT microflora may adversely impact the identification of antimicrobial alternatives, such as probiotic strains, for use within commercial broiler chickens. Application of a high-throughput typing method capable of distinguishing species and strains is needed to determine if differences exist between the Lactobacillus populations of chickens raised under NE and commercial conditions.While pulsed-field gel electrophoresis (PFGE) has been used widely for genotyping Lactobacillus strains (49, 50, 65), it is time-consuming, labor-intensive, expensive, and suitable only for low-throughput analysis of isolates (54, 65). In contrast, repetitive-element PCR (Rep-PCR) has been developed for genotypically fingerprinting bacteria and is a fast and reliable high-throughput genotyping system (66, 67). Rep-PCR has been used successfully to identify strains of a variety of genera (33, 44, 48, 55). Several Rep-PCR primers, including the repetitive extragenic palindromic (REP) primers (6, 9, 16, 65), the enterobacterial repetitive intergenic consensus (ERIC) primers (6, 65), and the (GTG)5 primer (24, 40, 62), have been used in the typing of lactobacilli in studies which have generally focused on species important to the dairy industry and food fermentations. Very few studies have examined the application of Rep-PCR to species commonly identified in the chicken GIT (62, 65). To our knowledge, only a single study has actually applied Rep-PCR to type Lactobacillus isolates from chickens (62) for the identification of potential probiotics to control Salmonella enterica serovar Enteritidis in egg-laying hens.The aim of this study was to investigate whether Rep-PCR could be used to analyze Lactobacillus species and strains in the chicken GIT. Several Rep-PCR techniques [REP-, ERIC-, and (GTG)5-PCR] were compared for the ability to type strains of several Lactobacillus species commonly isolated from the chicken GIT (L. crispatus, L. gallinarum, L. johnsonii, and L. reuteri). ERIC-PCR was able to simultaneously type isolates to the species and strain levels, and its strain differentiation ability was comparable with that of PFGE. ERIC-PCR was further applied to high-throughput analysis of a large number of isolates collected from chickens raised under NE and commercial conditions.  相似文献   

15.
A total of 560 Legionella species were isolated from environmental water sources from public facilities from June to September 2008 throughout South Korea. The distribution of Legionella isolates was investigated according to geographical region, facility type, and sample type. The genetic diversity of 104 isolates of Legionella pneumophila serogroup 1 (sg 1) was analyzed by sequence-based typing (SBT). L. pneumophila was distributed broadly throughout Korea, accounting for 85.0% of the isolates, and L. pneumophila sg 1 predominated in all of the public facilities except for the springs. Legionella anisa and Legionella bozemanii predominated among non-L. pneumophila species (48.1% and 21.0%, respectively). The second most dominant strain differed depending on the facility type: L. anisa was the second most dominant strain in the buildings (10.8%), L. pneumophila sg 5 in public baths (21.6%), L. pneumophila sg 6 in factories (12.0%), and L. pneumophila sg 7 in hospitals (13.1%). In the SBT analysis, 104 L. pneumophila sg 1 isolates were differentiated into 26 sequence types (STs) and categorized into 3 clonal groups (CGs) and 10 singleton STs via the eBURST V3 program. ST1, a potential founder of major CG1, was commonly distributed (48.1%). The dominant ST in hot water was ST-K1 (7, 12, 17, 3, 35, 11, 11), which was designated in this study (36.1%). The second most dominant strain differed depending on the type of facility from which the samples were obtained. The unique allelic profile of ST-K1, obtained from hot water, was not found in the European Working Group for Legionella Infections (EWGLI) SBT database.Legionella species, ubiquitous Gram-negative bacteria, are found in a variety of artificial water systems, natural freshwaters, and soils. Currently, the Legionella genus includes 52 species and more than 70 different serogroups, and more than 20 species have been proven to be causative agents of Legionnaires'' disease (LD). The species Legionella pneumophila accounts for approximately 90% of confirmed cases of legionellosis, and L. pneumophila serogroup 1 (sg 1) has been recognized as the most important agent in this regard, as that specific strain was initially implicated as the pathogen causative of LD in 1977 (15; http://www.bacterio.cict.fr/l/legionellaceae.html). The other non-L. pneumophila sg 1 strains, sg 2 to 15, accounted for 7.4% of cases, and Legionella longbeachae (3.9%) and Legionella bozemanii (2.4%) have also been associated with the pathogen of LD. In particular, L. longbeachae has been recognized as accounting for 30.4% of community-acquired Legionella isolates in Australia and New Zealand (53).The most common transmission mechanism of legionellosis is the inhalation of aerosols from the water systems of artificial facilities, including large buildings, hotels, hospitals, public baths, spas, or decorative fountains contaminated by Legionella species (1). Therefore, hot water and water from cooling towers have been perceived as sources of infection in cases of community-acquired, nosocomially acquired, or travel-associated LD (15, 26, 31, 37, 38, 39, 41, 43). Thus, it is important from a public health perspective to continually survey environmental water systems for the presence of Legionella species (2, 34, 35). In particular, hot-water systems used as public baths, such as springs, spas, or tubs, have become a popular means of recreation in a lot of countries, including South Korea. The contamination of hot-water systems has gradually become recognized as an important risk factor all over the world (4, 12, 18, 23, 42, 50), as sources of legionellosis have been detected increasingly since 1982 (52) and many cases of nosocomially acquired (32, 51) and community-acquired (6, 7, 48) LD have been detected in Legionella-contaminated hot-water systems or hot springs.In South Korea, several cases of nosocomial infection and community-acquired pneumonia have occasionally been reported (9, 45) since the first recognized outbreak in South Korea in 1984, which was associated with Legionella gormanii (27). Since 2006, the Korean National Infectious Disease Surveillance (NIDS) program (http://dis.cdc.go.kr/) has reported an average of 20 cases of LD per year (29). In South Korea, surveys of Legionella acquired from environmental water in public facilities such as hot springs and public baths has been gradually enhanced since 2007. An annual training program for the detection of Legionella species from environmental water systems and clinical specimens is currently conducted for the personnel of 16 Provincial Institute of Health and Environment locations (PIHEs) throughout South Korea. Recently, the rate of detection of environmental Legionella bacteria has been gradually increasing (8.1% in 2006, 9.4% in 2007, and 10.3% in 2008).The principal objectives of this study were to assess the current distribution of Legionella species from environmental water sources from public facilities such as buildings, hotels, public baths, springs, hospitals, or factories throughout South Korea. Additionally, the molecular typing of L. pneumophila sg 1 isolates was conducted using sequence-based typing (SBT) to assess the genetic diversity among the isolates.  相似文献   

16.
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has traditionally circulated in Africa and Asia, causing human febrile illness accompanied by severe, chronic joint pain. In Africa, epidemic emergence of CHIKV involves the transition from an enzootic, sylvatic cycle involving arboreal mosquito vectors and nonhuman primates, into an urban cycle where peridomestic mosquitoes transmit among humans. In Asia, however, CHIKV appears to circulate only in the endemic, urban cycle. Recently, CHIKV emerged into the Indian Ocean and the Indian subcontinent to cause major epidemics. To examine patterns of CHIKV evolution and the origins of these outbreaks, as well as to examine whether evolutionary rates that vary between enzootic and epidemic transmission, we sequenced the genomes of 40 CHIKV strains and performed a phylogenetic analysis representing the most comprehensive study of its kind to date. We inferred that extant CHIKV strains evolved from an ancestor that existed within the last 500 years and that some geographic overlap exists between two main enzootic lineages previously thought to be geographically separated within Africa. We estimated that CHIKV was introduced from Africa into Asia 70 to 90 years ago. The recent Indian Ocean and Indian subcontinent epidemics appear to have emerged independently from the mainland of East Africa. This finding underscores the importance of surveillance to rapidly detect and control African outbreaks before exportation can occur. Significantly higher rates of nucleotide substitution appear to occur during urban than during enzootic transmission. These results suggest fundamental differences in transmission modes and/or dynamics in these two transmission cycles.Chikungunya virus (CHIKV; Togaviridae: Alphavirus) is an arbovirus (arthropod-borne virus) vectored by Aedes mosquitoes to humans in tropical and subtropical regions of Africa and Asia (Fig. (Fig.1;1; reviewed in references 26 and 46). CHIKV has a single-stranded, positive-sense RNA genome of ∼12 kb and causes chikungunya fever (CHIK), a febrile illness associated with severe arthralgia and rash (2, 15, 31, 35); the name is derived from a Bantu language word describing the severe arthritic signs (32), which can persist for years. Thus, CHIK has enormous economic costs in addition to its public health impact (9). Because the signs and symptoms of CHIK overlap with those of dengue and because CHIKV is transmitted sympatrically in urban areas by the same mosquito vectors, it is grossly underreported in the absence of laboratory diagnostics (10, 37).Open in a separate windowFIG. 1.Distribution of the CHIKV strains used in this study. The map, based on a world map template from http://www.presentationmagazine.com, was edited with permission.CHIKV was first isolated during a 1953 outbreak in present-day Tanzania by Ross (48, 49). Since then, outbreaks have been documented in Africa and Asia, including the Indian subcontinent (Fig. (Fig.1)1) (1, 4). In 2005, CHIKV emerged from East Africa to cause an explosive urban epidemic in popular tourist island destinations in the Indian Ocean (Fig. (Fig.1;1; reviewed in reference 31). In late 2005, CHIKV spread into the Indian subcontinent, where millions of people have been affected (5). However, the geographic source of spread into India, from the mainland of Africa or from the Indian Ocean Islands, has not been delineated. India had seen large epidemics of CHIK in the past (reviewed in reference 30), but CHIKV apparently disappeared during the 1970s (5). Since 2006, CHIKV has been imported into Europe and the western hemisphere (including the United States) via many viremic travelers, and an epidemic was initiated in Italy by a traveler from India (4, 11, 47). The dramatic spread since 1980 of dengue viruses (DENV) throughout tropical America, via the same vectors, portends the severity of the public health problem if CHIKV becomes established in the western hemisphere.The first phylogenetic analysis of CHIKV (45) identified three geographically associated genotypes: the West African (WAf), East/Central/South African (ECSA), and Asian genotypes. More recent analyses indicate that the recent Indian Ocean and Indian strains form a monophyletic group within the ECSA lineage (5, 12, 14, 27, 40, 51, 52). However, most CHIKV phylogenetic studies (1, 14, 28, 29, 38, 40, 41, 47, 52) have utilized only partial sequences from the envelope glycoprotein E1 gene, preventing a robust assessment of some of the relationships among strains and of their evolutionary dynamics.The CHIKV strains represented in different geographic lineages apparently circulate in different ecological cycles. In Asia, CHIKV appears to circulate primarily in an urban transmission cycle involving the peridomestic mosquitoes Aedes aegypti and A. albopictus, as well as humans (25, 45). Asian epidemics typically infect thousands-to-millions of people over the course of several years (46). In contrast, African CHIKV circulates primarily in a sylvatic/enzootic cycle, transmitted by arboreal primatophilic Aedes mosquitoes (e.g., A. furcifer and A. africanus) and probably relies on nonhuman primates as reservoir hosts (reviewed in reference 16). Epidemics in rural Africa usually occur on a much smaller scale than in Asia, likely a result of the lower human population densities, and possibly more stable herd immunity. Although the assignments of “urban” and “sylvatic/enzootic” are based on the most common mode of transmission, CHIKV strains of African origin are capable of urban transmission by A. aegypti and A. albopictus, as evidenced by outbreaks in the Democratic Republic of the Congo (41), Nigeria (36), Kenya (27), and Gabon (42). The ecological differences between the sylvatic/enzootic (henceforth called enzootic) and urban/endemic/epidemic transmission cycles (henceforth called epidemic) such as seasonality of vector larval habitats, vertebrate host abundance and herd immunity, and vector host preferences, prompted us to hypothesize that the evolutionary dynamics of CHIKV may differ between the two transmission cycles. To test this hypothesis, to provide more robust estimates of the evolutionary relationships among the CHIKV strains including the sources of the recent epidemics, and to elucidate the temporal and spatial history of CHIKV evolution, we performed an extensive, genome-scale phylogenetic analysis, utilizing complete open reading frame (ORF) sequences of a large collection of 80 isolates with broad temporal, spatial, and host coverage.  相似文献   

17.
18.
19.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

20.
Cyanophycin (multi-l-arginyl-poly-l-aspartic acid; also known as cyanophycin grana peptide [CGP]) is a putative precursor for numerous biodegradable technically used chemicals. Therefore, the biosynthesis and production of the polymer in recombinant organisms is of special interest. The synthesis of cyanophycin derivatives consisting of a wider range of constituents would broaden the applications of this polymer. We applied recombinant Saccharomyces cerevisiae strains defective in arginine metabolism and expressing the cyanophycin synthetase of Synechocystis sp. strain PCC 6308 in order to synthesize CGP with citrulline and ornithine as constituents. Strains defective in arginine degradation (Car1 and Car2) accumulated up to 4% (wt/wt) CGP, whereas strains defective in arginine synthesis (Arg1, Arg3, and Arg4) accumulated up to 15.3% (wt/wt) of CGP, which is more than twofold higher than the previously content reported in yeast and the highest content ever reported in eukaryotes. Characterization of the isolated polymers by different analytical methods indicated that CGP synthesized by strain Arg1 (with argininosuccinate synthetase deleted) consisted of up to 20 mol% of citrulline, whereas CGP from strain Arg3 (with ornithine carbamoyltransferase deleted) consisted of up to 8 mol% of ornithine, and CGP isolated from strain Arg4 (with argininosuccinate lyase deleted) consisted of up to 16 mol% lysine. Cultivation experiments indicated that the incorporation of citrulline or ornithine is enhanced by the addition of low amounts of arginine (2 mM) and also by the addition of ornithine or citrulline (10 to 40 mM), respectively, to the medium.Cyanophycin (multi-l-arginyl-poly-[l-aspartic acid]), also referred to as cyanophycin grana peptide (CGP), represents a polydisperse nonribosomally synthesized polypeptide consisting of poly(aspartic acid) as backbone and arginine residues bound to each aspartate (49) (Fig. (Fig.1).1). One enzyme only, referred to as cyanophycin synthetase (CphA), catalyzes the synthesis of the polymer from amino acids (55). Several CphAs originating from different bacteria exhibit specific features (2, 7, 5, 32, 50, 51). CphAs from the cyanobacteria Synechocystis sp. strain PCC 6308 and Anabaena variabilis ATCC 29413, respectively, exhibit a wide substrate range in vitro (2, 7), whereas CphA from Acinetobacter baylyi or Nostoc ellipsosporum incorporates only aspartate and arginine (23, 24, 32). CphA from Thermosynechococcus elongatus catalyzes the synthesis of CGP primer independently (5); CphA from Synechococcus sp. strain MA19 exhibits high thermostability (22). Furthermore, two types of CGP were observed concerning its solubility behavior: (i) a water-insoluble type that becomes soluble at high or low pH (34, 48) and (ii) a water-soluble type that was only recently observed in recombinant organisms (19, 26, 42, 50, 56). In the past, bacteria were mainly applied for the synthesis of CGP (3, 14, 18, 53), whereas recently there has been greater interest in synthesis in eukaryotes (26, 42, 50). CGP was accumulated to almost 7% (wt/wt) of dry matter in recombinant Nicotiana tabacum and Saccharomyces cerevisiae (26, 50).Open in a separate windowFIG. 1.Chemical structures of dipeptide building blocks of CGP variants detected in vivo. Structure: 1, aspartate-arginine; 2, aspartate-lysine; 3, aspartate-citrulline; 4, aspartate-ornithine. Aspartic acid is presented in black; the second amino acid of the dipeptide building blocks is shown in gray. The nomenclature of the carbon atoms is given.In S. cerevisiae the arginine metabolism is well understood and has been investigated (30) (see Fig. Fig.2).2). Arginine is synthesized from glutamate via ornithine and citrulline in eight successive steps. The enzymes acetylglutamate synthase, acetylglutamate kinase, N-acetyl-γ-glutamylphosphate reductase, and acetylornithine aminotransferase are involved in the formation of N-α-acetylornithine. The latter is converted to ornithine by acetylornithine acetyltransferase. In the next step, ornithine carbamoyltransferase (ARG3) condenses ornithine with carbamoylphosphate, yielding citrulline. Citrulline is then converted to l-argininosuccinate by argininosuccinate synthetase. The latter is in the final step cleaved into fumarate and arginine by argininosuccinate lyase (ARG4). The first five steps occur in the mitochondria, whereas the last three reactions occur in the cytosol (28, 54). Arginine degradation is initiated by arginase (CAR1) and ornithine aminotransferase (CAR2) (10, 11, 38, 39).Open in a separate windowFIG. 2.Schematic overview of the arginine metabolism in S. cerevisiae. Reactions shown in the shaded area occur in the mitochondria, while the other reactions are catalyzed in the cytosol. Abbreviations: ARG2, acetylglutamate synthase; ARG6, acetylglutamate kinase; ARG5, N-acetyl-γ-glutamyl-phosphate reductase; ARG8, acetylornithine aminotransferase; ECM40, acetylornithine acetyltransferase; ARG1, argininosuccinate synthetase; ARG3, ornithine carbamoyltransferase; ARG4, argininosuccinate lyase; CAR1, arginase; CAR2, ornithine aminotransferase.A multitude of putative applications for CGP derivatives are available (29, 41, 45, 47), thus indicating a need for efficient biotechnological production and for further investigations concerning the synthesis of CGP with alternative properties and different constituents. It is not only the putative application of the polymer as a precursor for poly(aspartic acid), which is used as biodegradable alternative for poly(acrylic acid) or for bulk chemicals, that makes CGP interesting (29, 45-47). In addition, a recently developed process for the production of dipeptides from CGP as a precursor makes the synthesis of CGP variants worthwhile (43). Dipeptides play an important role in medicine and pharmacy, e.g., as additives for malnourished patients, as treatments against liver diseases, or as aids for muscle proliferation (43). Because dipeptides are synthesized chemically (40) or enzymatically (6), novel biotechnological production processes are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号